These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 437275)

  • 41. Redox mechanisms in "oxidant-dependent" hexose fermentation by Rhodopseudomonas capsulata.
    Cox JC; Madigan MT; Favinger JL; Gest H
    Arch Biochem Biophys; 1980 Oct; 204(1):10-7. PubMed ID: 7000002
    [No Abstract]   [Full Text] [Related]  

  • 42. Possible mechanism of photophosphorylation in Rhodopseudomonas viridis.
    Kerber NL; Pucheu NL; García AP
    Acta Physiol Lat Am; 1976; 26(5):337-42. PubMed ID: 1052599
    [TBL] [Abstract][Full Text] [Related]  

  • 43. BadM is a transcriptional repressor and one of three regulators that control benzoyl coenzyme A reductase gene expression in Rhodopseudomonas palustris.
    Peres CM; Harwood CS
    J Bacteriol; 2006 Dec; 188(24):8662-5. PubMed ID: 17041049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioenergetic aspects of bacteriophage replication in the photosynthetic bacterium Rhodopseudomonas capsulata.
    Schmidt LS; Yen HC; Gest H
    Arch Biochem Biophys; 1974 Nov; 165(1):229-39. PubMed ID: 4441075
    [No Abstract]   [Full Text] [Related]  

  • 45. Regulation of tRNA methyltransferase activities by spermidine and putrescine. Inhibition of polyamine synthesis and tRNA methylation by alpha-methylornithine or 1,3-diaminopropan-2-ol in Dictyostelium.
    Mach M; Kersten H; Kersten W
    Biochem J; 1982 Jan; 202(1):153-62. PubMed ID: 7082304
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The human gut bacteria Bacteroides thetaiotaomicron and Fusobacterium varium produce putrescine and spermidine in cecum of pectin-fed gnotobiotic rats.
    Noack J; Dongowski G; Hartmann L; Blaut M
    J Nutr; 2000 May; 130(5):1225-31. PubMed ID: 10801923
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ornithine decarboxylase activity and the accumulation of putrescine at early stages of liver regeneration.
    Hölttä E; Jänne J
    FEBS Lett; 1972 Jun; 23(1):117-21. PubMed ID: 5085262
    [No Abstract]   [Full Text] [Related]  

  • 48. Photobiodegradation of pyridine by Rhodopseudomonas palustris JA1.
    Ramana ChV; Arunasri K; Sasikala Ch
    Indian J Exp Biol; 2002 Aug; 40(8):967-70. PubMed ID: 12597034
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formation of putrescine and acetylspermidine from spermidine by cultured human lymphocytes.
    Faber J; Menashe M; Bachrach U; Desser H
    FEBS Lett; 1980 Nov; 121(1):165-8. PubMed ID: 7461112
    [No Abstract]   [Full Text] [Related]  

  • 50. Dependency on environmental redox potential of photophosphorylation in Rhodopseudomonas spheroides.
    Culbert-Runquist JA; Hadsell RM; Loach PA
    Biochemistry; 1973 Aug; 12(18):3508-14. PubMed ID: 4542403
    [No Abstract]   [Full Text] [Related]  

  • 51. The structural organization of the antenna chromophore protein complexes in membranes of the photosynthetic bacterium Rhodopseudomonas viridis.
    Klevanik AV
    Membr Cell Biol; 1998; 12(1):9-26. PubMed ID: 9829255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membranes of Rhodopseudomonas spheroides. II. Precursor-product relations in anaerobically growing cells.
    Gibson KD; Segen BJ; Niederman RA
    Arch Biochem Biophys; 1972 Oct; 152(2):561-8. PubMed ID: 4539053
    [No Abstract]   [Full Text] [Related]  

  • 53. Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria.
    van der Woude BJ; de Boer M; van der Put NM; van der Geld FM; Prins RA; Gottschal JC
    FEMS Microbiol Lett; 1994 Jun; 119(1-2):199-207. PubMed ID: 8039661
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy-linked electron transfer reactions in Rhodopseudomonas viridis.
    Jones OT; Saunders VA
    Biochim Biophys Acta; 1972 Sep; 275(3):427-36. PubMed ID: 4403603
    [No Abstract]   [Full Text] [Related]  

  • 55. Crystallization and preliminary X-ray studies on the reaction center-light-harvesting 1 core complex from Rhodopseudomonas viridis.
    Saijo S; Sato T; Kumasaka T; Tanaka N; Harata K; Odahara T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Jan; 61(Pt 1):83-6. PubMed ID: 16508098
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Langmuir-Blodgett monolayer films of the Rhodopseudomonas viridis reaction center: determination of the order of the hemes in the cytochrome c subunit.
    Alegria G; Dutton PL
    Biochim Biophys Acta; 1991 Mar; 1057(2):258-72. PubMed ID: 1849740
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oxidative phosphorylation and effects of aerobic conditions on Rhodopseudomonas viridis.
    Saunders VA; Jones OT
    Biochim Biophys Acta; 1973 Jun; 305(3):581-9. PubMed ID: 4354792
    [No Abstract]   [Full Text] [Related]  

  • 58. [Differentiation of membranes from Rhodopseudomonas capsulata with respect to their photosynthetic and respiratory functions].
    Lampe HH; Drews G
    Arch Mikrobiol; 1972; 84(1):1-19. PubMed ID: 4403344
    [No Abstract]   [Full Text] [Related]  

  • 59. Formulation of N-acetylputrescine and N1-acetylspermidine in cultured human lymphocytes.
    Menashe M; Faber J; Bachrach U
    Biochem J; 1980 Apr; 188(1):263-7. PubMed ID: 7406885
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spermidine Inversely Influences Surface Interactions and Planktonic Growth in Agrobacterium tumefaciens.
    Wang Y; Kim SH; Natarajan R; Heindl JE; Bruger EL; Waters CM; Michael AJ; Fuqua C
    J Bacteriol; 2016 Oct; 198(19):2682-91. PubMed ID: 27402627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.