These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 4372999)

  • 1. Maintenance of the energy charge in the presence of large decreases in the total adenylate pool of Escherichia coli and concurrent changes in glucose-6-p, fructose-p2 and glycogen synthesis.
    Dietzler DN; Lais CJ; Magnani JL; Leckie MP
    Biochem Biophys Res Commun; 1974 Oct; 60(3):875-81. PubMed ID: 4372999
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for new factors in the coordinate regulation of energy metabolism in Escherichia coli. Effects of hypoxia, chloramphenicol succinate, and 2,4-dinitrophenol on glucose utilization, glycogen synthesis, adenylate energy charge, and hexose phosphates during the first two periods of nitrogen starvation.
    Dietzler DN; Leckie MP; Lewis JW; Porter SE; Taxman TL; Lais CJ
    J Biol Chem; 1979 Sep; 254(17):8295-307. PubMed ID: 381303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Energy aspects of the growth of Escherichia coli synchronized by starvation].
    Tkachenko AG; Chudinov AA
    Mikrobiologiia; 1987; 56(1):58-63. PubMed ID: 3295494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in Escherichia coli. I. Quantitative covariance of the rate of glucose utilization and the cellular level of fructose 1,6-diphosphate during exponential growth and nutrient limitation.
    Dietzler DN; Leckie MP; Bergstein PE; Sughrue MJ
    J Biol Chem; 1975 Sep; 250(18):7188-93. PubMed ID: 1100622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of glycogen synthesis and glucose utilization in Escherichia coli during maintenance of the energy charge. Quantitative correlation of changes in the rates of glycogen synthesis and glucose utilization with simultaneous changes in the cellular levels of both glucose 6-phosphate and fructose 1,6-diphosphate.
    Dietzler DN; Leckie MP; Sternheim WL; Ungar JM; Crimmins DL; Lewis JW
    J Biol Chem; 1979 Sep; 254(17):8276-87. PubMed ID: 381301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous increases of the adenylate energy charge and the rate of glycogen synthesis in nitrogen-starved Escherichia coli W4597(K).
    Dietzler DN; Lais CJ; Leckie MP
    Arch Biochem Biophys; 1974 Jan; 160(1):14-25. PubMed ID: 4151323
    [No Abstract]   [Full Text] [Related]  

  • 7. Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in Escherichia coli. II. Quantitative correlation of the inhibition of glycogen synthesis and the stimulation of glucose utilization by 2,4-dinitrophenol with the effects on the cellular levels of glucose 6-phosphate, fructose, 1,6-diphosphate, and total adenylates.
    Dietzler DN; Leckie MP; Magnani JL; Sughrue MJ; Bergstein PE
    J Biol Chem; 1975 Sep; 250(18):7195-203. PubMed ID: 1100623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Metabolite level from energy metabolism in Escherichia coli cells during growth on various substrates].
    Potselueva MM; Rybina VV; Koshevoĭ IuV; Polteva NA
    Prikl Biokhim Mikrobiol; 1991; 27(3):399-404. PubMed ID: 1946249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of cyclic adenosine 3':5'-monophosphate to the regulation of bacterial glycogen synthesis in vivo. Effect of carbon source and cyclic adenosine 3':5'-monophosphate on the quantitative relationship between the rate of glycogen synthesis and the cellular concentrations of glucose 6-phosphate and fructose 1,6-diphosphate in Escherichia coli.
    Dietzler DN; Leckie MP; Magnani JL; Sughrue MJ; Bergstein PE; Sternheim WL
    J Biol Chem; 1979 Sep; 254(17):8308-17. PubMed ID: 224050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on cerebral energy metabolism during the course of galactose neurotoxicity in chicks.
    Granett SE; Kozak LP; McIntyre JP; Wells WW
    J Neurochem; 1972 Jul; 19(7):1659-70. PubMed ID: 4339530
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for the allosteric regulation of glycogen synthesis in the intact Escherichia coli cell. Agreement of the values of the parameters of the Hill equation fitted to data for glycogen synthesis in vivo with the abailable values obtained in vitro with adenosine diphosphoglucose synthetase.
    Dietzler DN; Leckie MP; Lais CJ; Magnani JL
    J Biol Chem; 1975 Mar; 250(6):2383-7. PubMed ID: 1090618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture.
    Guedon E; Desvaux M; Petitdemange H
    J Bacteriol; 2000 Apr; 182(7):2010-7. PubMed ID: 10715010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional capacities and the adenylate energy charge in Escherichia coli under conditions of nutritional stress.
    Walker-Simmons M; Atkinson DE
    J Bacteriol; 1977 May; 130(2):676-83. PubMed ID: 122511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes in the energy indices of Escherichia coli during exhaustion and renewal of glucose and ammonia supply as a factor responsible for the coupling of energy and constructive types of metabolism].
    Tkachenko AG
    Mikrobiologiia; 1990; 59(2):197-204. PubMed ID: 2233412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the rate of glucose utilization from cellular levels of glucose 6-phosphate and fructose 1,6-diphosphate in Escherichia coli.
    Dietzler DN; Leckie MP; Crimmins DL; Ungar JM; Sternheim WL
    J Bacteriol; 1976 Oct; 128(1):165-9. PubMed ID: 789330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that ATP exerts control of the rate of glucose utilization in the intact Escherichia coli cell by altering the cellular level of glucose-6-P, an intermediate known to inhibit glucose transport in vitro.
    Dietzler DN; Leckie MP; Magnani JL
    Biochem Biophys Res Commun; 1974 Sep; 60(2):622-8. PubMed ID: 4607992
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of adenosine diphosphate glucose synthase from Escherichia coli. Interactions of adenylate energy charge and modifier concentrations.
    Shen LC; Atkinson DE
    J Biol Chem; 1970 Aug; 245(15):3996-4000. PubMed ID: 4395382
    [No Abstract]   [Full Text] [Related]  

  • 18. Rates of glycogen synthesis and the cellular levels of ATP and FDP during exponential growth and the nitrogen-limited stationary phase of Escherichia coli W4597 (K).
    Dietzler DN; Leckie MP; Lais CJ
    Arch Biochem Biophys; 1973 Jun; 156(2):684-93. PubMed ID: 4578123
    [No Abstract]   [Full Text] [Related]  

  • 19. GLYCOGEN ACCUMULATION BY WILD-TYPE AND URIDINE DIPHOSPHATE GLUCOSE PYROPHOSPHORYLASE-NEGATIVE STRAINS OF ESCHERICHIA COLI.
    SIGAL N; CATTANEO J; SEGEL IH
    Arch Biochem Biophys; 1964 Dec; 108():440-51. PubMed ID: 14244684
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulatory aspects in carbohydrate metabolism of adipose tissue: glycolysis, glycogen synthesis, and glyceroneogenesis.
    Shafrir E; Gutman A; Gorin E; Orevi M
    Horm Metab Res; 1970; 2():Suppl 2:130-5. PubMed ID: 4949045
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.