These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 43733)

  • 1. Restoration of red cell catalase activity by glucose metabolism after exposure to a vitamin K analog.
    Sullivan SG; McMahon S; Stern A
    Biochem Pharmacol; 1979 Dec; 28(23):3403-7. PubMed ID: 43733
    [No Abstract]   [Full Text] [Related]  

  • 2. ADAPTIVE MECHANISMS IN ERYTHROCYTES EXPOSED TO NAPHTHOQUINONES.
    HARLEY JD; ROBIN H
    Aust J Exp Biol Med Sci; 1963 Aug; 41():281-92. PubMed ID: 14062446
    [No Abstract]   [Full Text] [Related]  

  • 3. [Activity of NAD- and NADP-containing enzymes and catalase in human erythrocytes after sucrose loading].
    Storozhuk PG; Skliar VA; Korochanskaia SP; Bykov IM
    Ukr Biokhim Zh (1978); 1987; 59(1):86-8. PubMed ID: 3810896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative carbohydrate catabolism and methemoglobin reduction in pig and human erythrocytes.
    Rivkin SE; Simon ER
    J Cell Physiol; 1965 Aug; 66(1):49-56. PubMed ID: 4379217
    [No Abstract]   [Full Text] [Related]  

  • 5. [Changes in glyceraldehydephosphate dehydrogenase, glucose-6-phosphate dehydrogenase, superoxide dismutase, and catalase activity in erythrocytes depending upon the rate of glucose utilization].
    Storozhuk PG; Skliar VA; Bykov IM
    Vopr Med Khim; 1988; 34(5):93-6. PubMed ID: 3218146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interrelationship of superoxide dismutase and peroxidatic enzymes in the red cell.
    McMahon S; Stern A
    Biochim Biophys Acta; 1979 Feb; 566(2):253-8. PubMed ID: 420858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red-cell glucose metabolism.
    Garby L
    Acta Anaesthesiol Scand Suppl; 1971; 45():26-9. PubMed ID: 4400366
    [No Abstract]   [Full Text] [Related]  

  • 8. Inherited methemoglobinemia (enzyme deficiencies).
    Waller HD
    Humangenetik; 1970; 9(3):217-8. PubMed ID: 4393777
    [No Abstract]   [Full Text] [Related]  

  • 9. Primaquine-mediated oxidative metabolism in the human red cell. Lack of dependence on oxyhemoglobin, H2O2 formation, or glutathione turnover.
    Kelman SN; Sullivan SG; Stern A
    Biochem Pharmacol; 1982 Jul; 31(14):2409-14. PubMed ID: 7126253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Methemoglobin and catalase activity in erythrocytes of children with hypothyroidism].
    Sal'nikova LA; Nikolaeva LV; Lopatina NI
    Vopr Med Khim; 1983; 29(2):101-4. PubMed ID: 6190314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes.
    Stubberfield CR; Cohen GM
    Biochem Pharmacol; 1989 Aug; 38(16):2631-7. PubMed ID: 2764986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Erythrocyte catalase].
    Aebi H
    Expos Annu Biochim Med; 1969; 29():139-66. PubMed ID: 4899179
    [No Abstract]   [Full Text] [Related]  

  • 13. Hereditary methemoglobinemia, toxic methemoglobinemia and the reduction of methemoglobin.
    Jaffé ER; Neumann G
    Ann N Y Acad Sci; 1968 Jul; 151(2):795-806. PubMed ID: 4313162
    [No Abstract]   [Full Text] [Related]  

  • 14. Red cell enzyme deficiencies: a review.
    Stiene EA
    Am J Med Technol; 1972 Nov; 38(11):454-61. PubMed ID: 4404285
    [No Abstract]   [Full Text] [Related]  

  • 15. Catalase activity and red cell metabolism.
    Eaton JW; Boraas M; Etkin NL
    Adv Exp Med Biol; 1972; 28():121-31. PubMed ID: 4404410
    [No Abstract]   [Full Text] [Related]  

  • 16. Red-cell catalase and the production of methaemoglobin, Heinz bodies and changes in osmotic fragility due to drugs.
    Tudhope GR; Leece SP
    Acta Haematol; 1971; 45(5):290-302. PubMed ID: 5000041
    [No Abstract]   [Full Text] [Related]  

  • 17. Decreased catalase activity is the underlying mechanism of oxidant susceptibility in glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Scott MD; Wagner TC; Chiu DT
    Biochim Biophys Acta; 1993 Apr; 1181(2):163-8. PubMed ID: 8481405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interdependence of hemoglobin, catalase and the hexose monophosphate shunt in red blood cells exposed to oxidative agents.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1980 Sep; 29(17):2351-9. PubMed ID: 6252900
    [No Abstract]   [Full Text] [Related]  

  • 19. Methemoglobin formation in the blood of Japanese subjects and mice suffering from acatalasemia in response to methemoglobin inducers.
    Ogata M; Ishii K; Ioku N; Meguro T
    Physiol Chem Phys Med NMR; 1990; 22(3):125-34. PubMed ID: 2093192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased glucose metabolism by enzyme-loaded erythrocytes in vitro and in vivo normalization of hyperglycemia in diabetic mice.
    Rossi L; Bianchi M; Magnani M
    Biotechnol Appl Biochem; 1992 Apr; 15(2):207-16. PubMed ID: 1586460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.