These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 437341)

  • 1. Expression of creatine kinase isoenzymes in myogenic cell lines.
    Dym H; Yaffe D
    Dev Biol; 1979 Feb; 68(2):592-9. PubMed ID: 437341
    [No Abstract]   [Full Text] [Related]  

  • 2. Demonstration of the presence of M-creatine kinase in mammalian myogenic cell lines.
    Perriard JC; Eppenberger HM
    Experientia; 1978 Sep; 34(9):1149-51. PubMed ID: 720508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of myogenic cell lines derived by 5-azacytidine treatment.
    Liu L; Harrington M; Jones PA
    Dev Biol; 1986 Oct; 117(2):331-6. PubMed ID: 2428680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative changes in creatine kinase isoenzymes during myogenesis in vitro.
    Morris GE; Piper M; Cole R
    Biochem Soc Trans; 1976; 4(6):1063-5. PubMed ID: 828586
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantitation of creatine kinase isoenzyme transition in differentiating chicken embryonic breast muscle and myogenic cell cultures by immunoadsorption.
    Perriard JC; Caravatti M; Perriard ER; Eppenberger HM
    Arch Biochem Biophys; 1978 Nov; 191(1):90-100. PubMed ID: 367277
    [No Abstract]   [Full Text] [Related]  

  • 6. Calcium and the control of muscle-specific creatine kinase accumulation during skeletal muscle differentiation in vitro.
    Morris GE; Cole RJ
    Dev Biol; 1979 Mar; 69(1):146-58. PubMed ID: 109335
    [No Abstract]   [Full Text] [Related]  

  • 7. A modified assay procedure for revealing the M form of creatine kinase in cultured muscle cells.
    Cohen A; Buckingham M; Gros F
    Exp Cell Res; 1978 Aug; 115(1):201-6. PubMed ID: 680012
    [No Abstract]   [Full Text] [Related]  

  • 8. Differentiation of creatine phosphokinase during myogenesis: quantitative fractionation of isozymes.
    Lough J; Bischoff R
    Dev Biol; 1977 Jun; 57(2):330-44. PubMed ID: 559598
    [No Abstract]   [Full Text] [Related]  

  • 9. Creatine kinase activity in cultures of differentiating myoblasts.
    Zalin R
    Biochem J; 1972 Nov; 130(2):79P. PubMed ID: 4352433
    [No Abstract]   [Full Text] [Related]  

  • 10. Creatine kinase and aldolase isoenzyme transitions in cultures of chick skeletal muscle cells.
    Turner DC; Maier V; Eppenberger HM
    Dev Biol; 1974 Mar; 37(1):63-89. PubMed ID: 4823504
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation of adenylate kinase and creatine kinase activities in myogenic cells.
    Tarikas H; Schubert D
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2377-81. PubMed ID: 4366764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the myogenic lineage in chick embryos. II. Evidence for a deterministic lineage in the final stages.
    Kligman D; Nameroff M
    Exp Cell Res; 1980 May; 127(1):237-47. PubMed ID: 7379865
    [No Abstract]   [Full Text] [Related]  

  • 13. High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase.
    Jacobs H; Heldt HW; Klingenberg M
    Biochem Biophys Res Commun; 1964 Aug; 16(6):516-21. PubMed ID: 5871842
    [No Abstract]   [Full Text] [Related]  

  • 14. BB creatine kinase and myogenic differentiation. Immunocytochemical identification of a distinct precursor compartment in the chicken skeletal myogenic lineage.
    Robinson MM; Quinn LS; Nameroff M
    Differentiation; 1984; 26(2):112-20. PubMed ID: 6734985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of lanthanum and cytochalasin B to study calcium effects on skeletal muscle differentiation in vitro.
    Morris GE
    J Cell Physiol; 1980 Dec; 105(3):431-8. PubMed ID: 6257736
    [No Abstract]   [Full Text] [Related]  

  • 16. A skeletal muscle cell line isolated from a mouse teratocarcinoma undergoes apparently normal terminal differentiation in vitro.
    Jakob H; Buckingham ME; Cohen A; Dupont L; Fiszman M; Jacob F
    Exp Cell Res; 1978 Jul; 114(2):403-8. PubMed ID: 679992
    [No Abstract]   [Full Text] [Related]  

  • 17. Analysis of myogenesis by somatic cell hybridization. I. Myogenic competence of homotypic hybrids derived from rat L6 myoblasts.
    Lawrence JB; Konieczny SF; Shaffer M; Coleman AW; Coleman JR
    Exp Cell Res; 1982 Dec; 142(2):261-72. PubMed ID: 7173324
    [No Abstract]   [Full Text] [Related]  

  • 18. Creatine kinase isoenzyme transition in actinomycin D-treated differentiating muscle cultures.
    Dym H; Turner DC; Eppenberger HM; Yaffe D
    Exp Cell Res; 1978 Apr; 113(1):15-21. PubMed ID: 639864
    [No Abstract]   [Full Text] [Related]  

  • 19. Coexpression of myogenic functions in L6 rat x T984 mouse myoblast hybrids.
    Wright WE; Gros F
    Dev Biol; 1981 Aug; 86(1):236-40. PubMed ID: 7286397
    [No Abstract]   [Full Text] [Related]  

  • 20. Differentiation in cultures derived from embryonic chicken muscle. I. Muscle-specific enzyme changes before fusion in EGTA-synchronized cultures.
    Turner DC; Gmür R; Siegrist M; Burckhardt E; Eppenberger HM
    Dev Biol; 1976 Feb; 48(2):258-83. PubMed ID: 815111
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.