These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders. Harris WA J Comp Neurol; 1980 Nov; 194(2):303-17. PubMed ID: 7440803 [TBL] [Abstract][Full Text] [Related]
23. Morphogenesis and physiogenesis of the retino-tectal connection in the chicken. I. The retinal ganglion cells and their axons. Rager G Proc R Soc Lond B Biol Sci; 1976 Feb; 192(1108):331-52. PubMed ID: 3794 [No Abstract] [Full Text] [Related]
24. The development of retinotectal maps: a review of models based on molecular gradients. Goodhill GJ; Xu J Network; 2005 Mar; 16(1):5-34. PubMed ID: 16353341 [TBL] [Abstract][Full Text] [Related]
25. Identification of novel candidate regulators of retinotectal map formation through transcriptional profiling of the chick optic tectum. Kukreja S; Gautam P; Saxena R; Saxena M; Udaykumar N; Kumar A; Bhatt R; Kumar V; Sen J J Comp Neurol; 2017 Feb; 525(3):459-477. PubMed ID: 27410778 [TBL] [Abstract][Full Text] [Related]
26. Morphogenetic forces in the development of the avian retina of possible significance for the polarity of central visual projections [proceedings]. Horder TJ; Mashkas A; Webb JN J Physiol; 1979 Jun; 291():12P-13P. PubMed ID: 480199 [No Abstract] [Full Text] [Related]
27. Position, guidance, and mapping in the developing visual system. Holt CE; Harris WA J Neurobiol; 1993 Oct; 24(10):1400-22. PubMed ID: 8228964 [TBL] [Abstract][Full Text] [Related]
28. The development of the isthmo-optic nucleus in the duck (Anasplatyrhynchos) I. Changes in cell number and cell size during normal development. Sohal GS; Narayanan CH Brain Res; 1974 Sep; 77(2):243-55. PubMed ID: 4854714 [No Abstract] [Full Text] [Related]
29. Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system. Vislay-Meltzer RL; Kampff AR; Engert F Neuron; 2006 Apr; 50(1):101-14. PubMed ID: 16600859 [TBL] [Abstract][Full Text] [Related]
30. Segregation of optic fibre projections into eye-specific bands in dually innervated tecta in Xenopus. Straznicky C; Tay D; Hiscock J Neurosci Lett; 1980 Sep; 19(2):131-6. PubMed ID: 7052521 [TBL] [Abstract][Full Text] [Related]
31. Course corrections of deflected retinal axons on the tectum of the chick embryo. Thanos S; Bonhoeffer F Neurosci Lett; 1986 Dec; 72(1):31-6. PubMed ID: 3808460 [TBL] [Abstract][Full Text] [Related]
32. The orientation of the visuotectal map in Xenopus: developmental aspects. Gaze RM; Feldman JD; Cooke J; Chung SH J Embryol Exp Morphol; 1979 Oct; 53():39-66. PubMed ID: 536695 [TBL] [Abstract][Full Text] [Related]
33. Embryonic retinal ablation and post-metamorphic optic nerve crush: effects upon the pattern of regenerated retinotectal connections. Underwood LW; Nelson P; Noelke E; Ide CF J Exp Zool; 1992 Jan; 261(1):18-26. PubMed ID: 1729382 [TBL] [Abstract][Full Text] [Related]
34. Healing modes correlate with visuotectal pattern formation in regenerating embryonic Xenopus retina. Ide CF; Wunsh LM; Lecat PJ; Kahn D; Noelke EL Dev Biol; 1987 Dec; 124(2):316-30. PubMed ID: 3678599 [TBL] [Abstract][Full Text] [Related]
35. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts. Baudet ML; Rattray D; Harvey S Neuroscience; 2007 Aug; 148(1):151-63. PubMed ID: 17618059 [TBL] [Abstract][Full Text] [Related]
36. Fully differentiated Xenopus eye fragments regenerate to form pattern-duplicated visuo-tectal projections. Wunsh LM; Ide CF J Exp Zool; 1990 May; 254(2):192-201. PubMed ID: 2189942 [TBL] [Abstract][Full Text] [Related]
37. Specification of retinal central connections in Rana pipiens before the appearance of the first post-mitotic ganglion cells. Sharma SC; Hollyfield JG J Comp Neurol; 1974 Jun; 155(4):395-407. PubMed ID: 4546572 [No Abstract] [Full Text] [Related]
38. Evidence for a rapid phase of axoplasmic transport at early stages in the development of the visual system of the chick and frog. Crossland WJ; Currie JR; Rogers LA; Cowan WM Brain Res; 1974 Oct; 78(3):483-9. PubMed ID: 4138243 [No Abstract] [Full Text] [Related]
39. Midline glia of the tectum: a barrier for developing retinal axons. Jhaveri S Perspect Dev Neurobiol; 1993; 1(4):237-43. PubMed ID: 8087548 [TBL] [Abstract][Full Text] [Related]
40. Delayed innervation of the optic tectum during development in Xenopus laevis. Feldman JD; Gaze RM; Keating MJ Exp Brain Res; 1971; 14(1):16-23. PubMed ID: 5157533 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]