BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4373470)

  • 1. Activation of hexose transport by concanavalin A in isolated brown fat cells. Effects of cell surface modification with neuraminidase and trypsin on lectin and insulin action.
    Czech MP; Lawrence JC; Lynn WS
    J Biol Chem; 1974 Dec; 249(23):7499-505. PubMed ID: 4373470
    [No Abstract]   [Full Text] [Related]  

  • 2. Hexose transport in isolated brown fat cells. A model system for investigating insulin action on membrane transport.
    Czech MP; Lawrence JC; Lynn WS
    J Biol Chem; 1974 Sep; 249(17):5421-7. PubMed ID: 4413673
    [No Abstract]   [Full Text] [Related]  

  • 3. Insulin-like effect of clostridial phospholipase C, neuraminidase, and other bacterial factors on brown fat cells.
    Rosenthal JW; Fain JN
    J Biol Chem; 1971 Oct; 246(19):5888-95. PubMed ID: 4330059
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparison of the effects of insulin and H2O2 on adipocyte glucose transport.
    Ciaraldi TP; Olefsky JM
    J Cell Physiol; 1982 Mar; 110(3):323-8. PubMed ID: 7045141
    [No Abstract]   [Full Text] [Related]  

  • 5. Differential effects of sulfhydryl reagents on activation and deactivation of the fat cell hexose transport system.
    Czech MP
    J Biol Chem; 1976 Feb; 251(4):1164-70. PubMed ID: 1249070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of the biological activity of insulin, cyclic nucleotides and concanavalin A in the isolated fat cell.
    Solomon SS; King LE; Hashimoto K
    Horm Metab Res; 1975 Jul; 7(4):297-304. PubMed ID: 168139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The combined action of insulin and phlorizin on transport and metabolism of sugars and nucleotide turnover in the isolated rat diaphragm.
    Eboué-Bonis D; Clauser H
    Biochimie; 1977; 59(5-6):527-33. PubMed ID: 889936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane sialic acid and the mechanism of insulin action in adipose tissue cells. Effects of digestion with neuraminidase.
    Cuatrecasas P; Illiano G
    J Biol Chem; 1971 Aug; 246(16):4938-46. PubMed ID: 4998895
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin.
    Czech MP; Lawrence JC; Lynn WS
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):4173-7. PubMed ID: 4372610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of concanavalin A and neuraminidase on cyclic AMP levels and 14C-1-glucose oxidation in dog thyroid slices.
    Yamashita K; Aiyoshi Y; Oka H; Ogata E
    Endocrinol Jpn; 1976 Aug; 23(4):355-8. PubMed ID: 191247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine triphosphate-dependent inhibition of insulin-stimulated glucose transport in fat cells. Possible role of membrane phosphorylation.
    Chang KJ; Cuatrecasas P
    J Biol Chem; 1974 May; 249(10):3170-80. PubMed ID: 4830240
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of Concanavalin A on 3-O-methylglucose uptake in cultured chick embryo fibroblasts. Evidence for differences related to the age of embryos.
    Berjonneau C; Codogno P; Botti J; Giner M; Bernard B; Aubery M
    Differentiation; 1984; 27(3):192-5. PubMed ID: 6500202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glucocorticoids on the glucose transport system of isolated fat cells.
    Livingston JN; Lockwood DH
    J Biol Chem; 1975 Nov; 250(21):8353-60. PubMed ID: 1194258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring hexose transport in suspended cells.
    Gliemann J
    Methods Enzymol; 1989; 173():616-34. PubMed ID: 2674621
    [No Abstract]   [Full Text] [Related]  

  • 15. Termination of insulin-induced hexose transport in adipocytes.
    Laursen AL; Foley JE; Foley R; Gliemann J
    Biochim Biophys Acta; 1981 Feb; 673(1):132-6. PubMed ID: 7008850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. X. Effect of glucose transport stimuli on the efflux of isotopically labelled calcium and 3-O-methylglucose from soleus muscles and epididymal fat pads of the rat.
    Sørensen SS; Christensen F; Clausen T
    Biochim Biophys Acta; 1980 Nov; 602(2):433-45. PubMed ID: 6252967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial requirements for insulin-sensitive sugar transport in rat adipocytes.
    Holman GD; Pierce EJ; Rees WD
    Biochim Biophys Acta; 1981 Sep; 646(3):382-8. PubMed ID: 7025904
    [No Abstract]   [Full Text] [Related]  

  • 18. Activation of 3-O-methyl-glucose transport in rat thymus lymphocytes by concanavalin A. Temperature and calcium ion dependence and sensitivity to puromycin but to cycloheximide.
    Yasmeen D; Laird AJ; Hume DA; Weidemann MJ
    Biochim Biophys Acta; 1977 Nov; 500(1):89-102. PubMed ID: 303526
    [No Abstract]   [Full Text] [Related]  

  • 19. Kinetic parameters of transport of 3-O-methylglucose and glucose in adipocytes.
    Whitesell RR; Gliemann J
    J Biol Chem; 1979 Jun; 254(12):5276-83. PubMed ID: 447648
    [No Abstract]   [Full Text] [Related]  

  • 20. Sugar transport in fat cells: effects of mechanical agitation, cell-bound insulin, and temperature.
    Vega FV; Kono T
    Arch Biochem Biophys; 1979 Jan; 192(1):120-7. PubMed ID: 434813
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.