These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 4373740)
1. Active transport of calcium in inverted membrane vesicles of Escherichia coli. Rosen BP; McClees JS Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5042-6. PubMed ID: 4373740 [TBL] [Abstract][Full Text] [Related]
2. Functional mosaicism of membrane proteins in vesicles of Escherichia coli. Adler LW; Rosen BP J Bacteriol; 1977 Feb; 129(2):959-66. PubMed ID: 190212 [TBL] [Abstract][Full Text] [Related]
3. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Berger EA Proc Natl Acad Sci U S A; 1973 May; 70(5):1514-8. PubMed ID: 4268097 [TBL] [Abstract][Full Text] [Related]
4. Characterization of an active transport system for calcium in inverted membrane vesicles of Escherichia coli. Tsuchiya T; Rosen BP J Biol Chem; 1975 Oct; 250(19):7687-92. PubMed ID: 240836 [TBL] [Abstract][Full Text] [Related]
5. Phosphate transport in membrane vesicles from Escherichia coli. Konings WN; Rosenberg H Biochim Biophys Acta; 1978 Apr; 508(2):370-8. PubMed ID: 346064 [TBL] [Abstract][Full Text] [Related]
6. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii. Barnes EM; Roberts RR; Bhattacharyya P Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111 [TBL] [Abstract][Full Text] [Related]
7. Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli. Tsuchiya T; Rosen BP J Biol Chem; 1976 Feb; 251(4):962-7. PubMed ID: 2608 [TBL] [Abstract][Full Text] [Related]
8. ATP-dependent calcium transport in isolated membrane vesicles from Azotobacter vinelandii. Bhattacharyya P; Barnes EM J Biol Chem; 1976 Sep; 251(18):56-14-9. PubMed ID: 9392 [TBL] [Abstract][Full Text] [Related]
9. ATP-driven calcium transport in membrane vesicles of Streptococcus sanguis. Houng HS; Lynn AR; Rosen BP J Bacteriol; 1986 Nov; 168(2):1040-4. PubMed ID: 3096955 [TBL] [Abstract][Full Text] [Related]
10. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane. Reider E; Wagner EF; Schweiger M Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504 [TBL] [Abstract][Full Text] [Related]
11. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli. Anraku Y; Kin E; Tanaka Y J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599 [TBL] [Abstract][Full Text] [Related]
12. Energetics of glycylglycine transport in Escherichia coli. Cowell JL J Bacteriol; 1974 Oct; 120(1):139-46. PubMed ID: 4278690 [TBL] [Abstract][Full Text] [Related]
13. Coupling of energy to active transport of amino acids in Escherichia coli. Simoni RD; Shallenberger MK Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2663-7. PubMed ID: 4341704 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli. Singh AP; Bragg PD Biochim Biophys Acta; 1976 Mar; 423(3):450-61. PubMed ID: 130924 [TBL] [Abstract][Full Text] [Related]
15. Proline transport activity in Escherichia coli membrane vesicles of different buoyant densities. van Heerikhuizen H; Boekhout M; Witholt B Biochim Biophys Acta; 1977 Nov; 470(3):453-64. PubMed ID: 336091 [TBL] [Abstract][Full Text] [Related]
16. Active transport of Ca2+ in bacteria: bioenergetics and function. Devés R; Brodie AF Mol Cell Biochem; 1981 Apr; 36(2):65-84. PubMed ID: 6113540 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of energy coupling for transport of D-ribose in Escherichia coli. Curtis SJ J Bacteriol; 1974 Oct; 120(1):295-303. PubMed ID: 4278446 [TBL] [Abstract][Full Text] [Related]
18. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli. McMurry LM; Cullinane JC; Petrucci RE; Levy SB Antimicrob Agents Chemother; 1981 Sep; 20(3):307-13. PubMed ID: 7030198 [TBL] [Abstract][Full Text] [Related]
19. Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis. Dean DA; Davidson AL; Nikaido H Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9134-8. PubMed ID: 2531894 [TBL] [Abstract][Full Text] [Related]
20. Regulation of intracellular adenosine cyclic 3':5'-monophosphate levels in Escherichia coli and Salmonella typhimurium. Evidence for energy-dependent excretion of the cyclic nucleotide. Saier MH; Feucht BU; McCaman MT J Biol Chem; 1975 Oct; 250(19):7593-601. PubMed ID: 170265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]