These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 4373885)

  • 1. [Some characteristics of the energy metabolism of the erythrocytes of pigeons and their nuclei].
    Nemchinskaia VL; Mozhenok TP; Braun AD
    Tsitologiia; 1974 Oct; 16(10):1250-6. PubMed ID: 4373885
    [No Abstract]   [Full Text] [Related]  

  • 2. [Oxidative phosphorylation and ATPase activity of isolated nuclei and nuclear membranes of rat brain neurons and glia].
    Rapava EA; Kuz'mina SN; Zbarskiĭ IB
    Biokhimiia; 1973; 38(2):298-303. PubMed ID: 4360972
    [No Abstract]   [Full Text] [Related]  

  • 3. [Study of the phosphorylating activity of isolated nuclear membranes of the rat liver].
    Kuz'mina SN; Bul'diaeva TV; Kalandarishvili FA; Zbarskiĭ IB
    Biokhimiia; 1974; 39(4):762-70. PubMed ID: 4374260
    [No Abstract]   [Full Text] [Related]  

  • 4. [Synthesis of nicotinamide adenine dinucleotide in the nuclei of pigeon erythrocytes].
    Nemchinskaia VL; Makarova TG; Mozhenok TP; Braun AD
    Tsitologiia; 1975 Aug; 17(8):960-4. PubMed ID: 181878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The role of oxidative metabolism in energy supply for active potassium transport in erythrocytes of Lampetra fluviatilis].
    Gusev GP; Sherstobitov AO; Ivanova TI; Bogdanova AIu
    Zh Evol Biokhim Fiziol; 2001; 37(3):170-4. PubMed ID: 11605435
    [No Abstract]   [Full Text] [Related]  

  • 6. [Biochemistry of normal and leukemic leukocytes. X. Energy and carbohydrate metabolism of neutrophilic granulocytes].
    Sznajd J; Malkiewicz-Wasowicz B; Naskalski J; Lisiewicz J
    Przegl Lek; 1972; 29(6):634-40. PubMed ID: 4561226
    [No Abstract]   [Full Text] [Related]  

  • 7. Phosphorylation "in vitro" of red blood cell histones.
    Lurquin PF; Seligy VL; Neelin JM
    Arch Int Physiol Biochim; 1972 Jan; 80(1):202-3. PubMed ID: 4111316
    [No Abstract]   [Full Text] [Related]  

  • 8. Glycolytic and oxidative energy metabolism and contraction characteristics of intact human muscle.
    Hultman E; Sjöholm H; Sahlin K; Edström L
    Ciba Found Symp; 1981; 82():19-40. PubMed ID: 6271506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between pH and aerobic glycolysis in human and canine erythrocytes.
    Burr MJ
    Comp Biochem Physiol B; 1972 Apr; 41(4):687-94. PubMed ID: 4338066
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization.
    Ataullakhanov FI; Vitvitsky VM; Zhabotinsky AM; Pichugin AV; Kholodenko BN; Ehrlich LI
    Acta Biol Med Ger; 1981; 40(7-8):991-7. PubMed ID: 7331640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Energy metabolism of erythrocytes in lead poisoning].
    Pecora L; Elmino O; Di Paolo R
    Med Lav; 1971; 62(2):95-100. PubMed ID: 5132343
    [No Abstract]   [Full Text] [Related]  

  • 12. [Pharmacological correction of energy metabolism disturbance in the inflammatory-dystrophic process in the periodontium].
    Luk''ianchuk VD; Shpulina OA
    Eksp Klin Farmakol; 2006; 69(4):51-6. PubMed ID: 16995440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Regulatory characteristics of glycolysis in erythrocytes of sheep].
    Ataullakhanov AI; Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Pichugin AV
    Biokhimiia; 1982 Aug; 47(8):1293-8. PubMed ID: 7126696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts.
    Kobara M; Tatsumi T; Matoba S; Yamahara Y; Nakagawa C; Ohta B; Matsumoto T; Inoue D; Asayama J; Nakagawa M
    J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cell multiplication and energy metabolism of aerobic fermentation cells under aerobic and anaerobic conditions].
    Krause HP; Schneider F
    Hoppe Seylers Z Physiol Chem; 1972 May; 353(5):727-8. PubMed ID: 4672141
    [No Abstract]   [Full Text] [Related]  

  • 16. [Mathematical model for energy metabolism in erythrocytes. Independence of scaled glycolytic characteristics of individual features of the donors].
    Ataullakhanov FI; Buravtsev VN; Vitvitskiĭ VM; Dibrov BF; Zhabotinskiĭ AM
    Biokhimiia; 1980 Jul; 45(7):1267-73. PubMed ID: 6452178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of erythrocyte glycolysis by fear and epinephrine injection.
    Brewer GJ; Oelshlegel FJ; Schoomaker EB; Faulkner JA
    J Lab Clin Med; 1971 Nov; 78(5):837. PubMed ID: 5001924
    [No Abstract]   [Full Text] [Related]  

  • 18. [Mathematical model for carbohydrate energy metabolism. Mechanism of the Pasteur effect].
    Khainrikh R; Dynnik VV; Sel'kov EE
    Biokhimiia; 1980 Jun; 45(6):963-73. PubMed ID: 6452176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Regulation of erythrocyte energy metabolism. Dependence of glycolysis characteristics on donor individual parameters].
    Kholodenko BN; Dibrov BF; Zhabotinskiĭ AM
    Biofizika; 1981; 26(3):501-6. PubMed ID: 6455164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the dependence of nuclear oxidative phosphorylation on glycolysis in isolated rat thymus nuclei.
    Konings AW
    Experientia; 1969 Aug; 25(8):809-11. PubMed ID: 5348536
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.