BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 4374135)

  • 1. Mechanism of aromatic hydroxylation. Properties of a model for pyridine nucleotide-dependent flavoprotein hydroxylases.
    Ravindranath SD; Kumar AA; Kumar RP; Vaidyanathan CS; Rao NA
    Arch Biochem Biophys; 1974 Dec; 165(2):478-84. PubMed ID: 4374135
    [No Abstract]   [Full Text] [Related]  

  • 2. The acceptor specificity of flavins and flavoproteins. II. Free flavins.
    Dixon M
    Biochim Biophys Acta; 1971 Mar; 226(2):259-68. PubMed ID: 4324966
    [No Abstract]   [Full Text] [Related]  

  • 3. Use of 8-substituted-FAD analogues to investigate the hydroxylation mechanism of the flavoprotein 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Chaiyen P; Sucharitakul J; Svasti J; Entsch B; Massey V; Ballou DP
    Biochemistry; 2004 Apr; 43(13):3933-43. PubMed ID: 15049701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation of catechols by reduced flavins and dehydrogenases. An electron spin resonance study of the kinetics and initial products of oxidation.
    Miller RW; Rapp U
    J Biol Chem; 1973 Sep; 248(17):6084-90. PubMed ID: 4353630
    [No Abstract]   [Full Text] [Related]  

  • 5. The mechanism of action of the flavoprotein melilotate hydroxylase.
    Strickland S; Massey V
    J Biol Chem; 1973 Apr; 248(8):2953-62. PubMed ID: 4348921
    [No Abstract]   [Full Text] [Related]  

  • 6. Flavin-O2 interaction mechanisms and the function of flavin in hydroxylation reactions.
    Hemmerich P
    Ann N Y Acad Sci; 1973; 212():13-26. PubMed ID: 4532474
    [No Abstract]   [Full Text] [Related]  

  • 7. The acceptor specificity of flavins and flavoproteins. 3. Flavoproteins.
    Dixon M
    Biochim Biophys Acta; 1971 Mar; 226(2):269-84. PubMed ID: 4396857
    [No Abstract]   [Full Text] [Related]  

  • 8. Direct and respiratory chain-mediated redox cycling of adrenochrome.
    Bindoli A; Deeble DJ; Rigobello MP; Galzigna L
    Biochim Biophys Acta; 1990 Apr; 1016(3):349-56. PubMed ID: 2158818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bacterial degradation of flavonoids. Hydroxylation of the A-ring of taxifolin by a soil pseudomonad.
    Jeffrey AM; Knight M; Evans WC
    Biochem J; 1972 Nov; 130(2):373-81. PubMed ID: 4146277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding.
    Eppink MH; Schreuder HA; Van Berkel WJ
    Protein Sci; 1997 Nov; 6(11):2454-8. PubMed ID: 9385648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of hydroxylation of aromatic compounds: evidence for the involvement of superoxide anion in a model system.
    Kumar RP; Ravindranath SD; Vaidyanathan CS; Rao NA
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1049-54. PubMed ID: 4341046
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of the salicylate hydroxylase reaction. V. Kinetic analyses.
    Takemori S; Nakamura M; Suzuki K; Katagiri M; Nakamura T
    Biochim Biophys Acta; 1972 Oct; 284(2):382-93. PubMed ID: 4344154
    [No Abstract]   [Full Text] [Related]  

  • 15. The 2-hydroxylation of trans-cinnamic acid by chloroplasts from Melilotus alba Desr.
    Gestetner B; Conn EE
    Arch Biochem Biophys; 1974 Aug; 163(2):617-24. PubMed ID: 4153528
    [No Abstract]   [Full Text] [Related]  

  • 16. Microbial metabolism of the pyridine ring. The hydroxylation of 4-hydroxypyridine to pyridine-3,4-diol (3,4-dihydroxypyridine) by 4-hydroxypyridine-3-hydroxylase.
    Watson GK; Houghton C; Cain RB
    Biochem J; 1974 May; 140(2):265-76. PubMed ID: 4156169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermediates in flavoprotein catalyzed hydroxylations.
    Entsch B; Massey V; Ballou DP
    Biochem Biophys Res Commun; 1974 Apr; 57(4):1018-25. PubMed ID: 4830743
    [No Abstract]   [Full Text] [Related]  

  • 18. Free radical production from the aerobic oxidation of reduced pyridine nucleotides catalysed by phenazine derivatives.
    Davis G; Thornalley PJ
    Biochim Biophys Acta; 1983 Sep; 724(3):456-64. PubMed ID: 6311259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxylation of aromatic compounds by reduced nicotinamide-adenine dinucleotide and phenazine methosulphate requires hydrogen peroxide and hydroxyl radicals, but not superoxide.
    Halliwell B
    Biochem J; 1977 Oct; 167(1):317-20. PubMed ID: 201248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Styrylpyrone biosynthesis in Polyporus hispidus. II. Enzymic hydroxylation of p-coumaric acid and bis-noryangonin.
    Nambudiri AM; Vance CP; Towers GH
    Biochim Biophys Acta; 1974 Mar; 343(1):148-55. PubMed ID: 4151344
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.