These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4375178)

  • 1. Studies of fetal mouse hearts in organ culture: influence of prolonged exposure to triiodothyronine on cardiac responsiveness to isoproterenol, glucagon, theophylline, acetylcholine and dibutyryl cyclic 3',5'-adenosine monophosphate.
    Wildenthal K
    J Pharmacol Exp Ther; 1974 Aug; 190(2):272-9. PubMed ID: 4375178
    [No Abstract]   [Full Text] [Related]  

  • 2. Maturation of responsiveness to cardioactive drugs. Differential effects of acetylcholine, norepinephrine, theophylline, tyramine, glucagon, and dibutyryl cyclic AMP on atrial rate in hearts of fetal mice.
    Wildenthal K
    J Clin Invest; 1973 Sep; 52(9):2250-8. PubMed ID: 4353775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological differentiation of cultured mouse glioblastoma cells induced by dibutyryl cyclic adenosine monophosphate.
    Sato S; Sugimura T; Yoda K; Fujimura S
    Cancer Res; 1975 Sep; 35(9):2494-9. PubMed ID: 167961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormonal regulation of glycogen metabolism in human fetal liver. I. Normal development and effects of dibutyryl cyclic AMP, glucagon, and insulin in liver explants.
    Schwartz AL; Raiha NC; Rall TW
    Diabetes; 1975 Dec; 24(12):1101-12. PubMed ID: 172397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of a phosphodiesterase inhibitor on the chronotropic effects of glucagon and norepinephrine in fetal mouse hearts.
    Wildenthal K; Wakeland JR
    J Pharmacol Exp Ther; 1979 Nov; 211(2):350-2. PubMed ID: 574159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of intracellularly applied cyclic 3',5'-adenosine monophosphate and dibutyryl cyclic 3',5'-adenosine monophosphate on the electrical activity of sinoatrial nodal cells of the rabbit.
    Yamasaki Y; Fujiwara M; Toda N
    J Pharmacol Exp Ther; 1974 Jul; 190(1):15-20. PubMed ID: 4367896
    [No Abstract]   [Full Text] [Related]  

  • 7. Hormonal regulation of incorporation of alanine-U-14C into glucose in human fetal liver explants. Effect of dibutyryl cyclic AMP, glucagon, insulin, and triamcinolone.
    Schwartz AL; Rall TW
    Diabetes; 1975 Jul; 24(7):650-7. PubMed ID: 169172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of isolated fetal mouse hearts in organ culture. Evidence for a direct effect of triiodothyronine in enhancing cardiac responsiveness to norepinephrine.
    Wildenthal K
    J Clin Invest; 1972 Oct; 51(10):2702-9. PubMed ID: 5056662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphibian pancreas function in long-term organ culture: control of amylase release.
    Gater S; Balls M
    Gen Comp Endocrinol; 1977 Sep; 33(1):82-93. PubMed ID: 200518
    [No Abstract]   [Full Text] [Related]  

  • 10. Bronchodilator mechanisms in bullfrog lung: differences in response to isoproterenol, theophylline and papaverine.
    Taylor SM; Downes H
    J Pharmacol Exp Ther; 1982 Nov; 223(2):359-67. PubMed ID: 6290638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation of vascular smooth muscle by isoproterenol, dibutyryl-cyclic AMP and theophylline.
    Webb RC; Bohr DF
    J Pharmacol Exp Ther; 1981 Apr; 217(1):26-35. PubMed ID: 6259328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative effects of some cardioactive agents on automaticity of cultured heart cells.
    Boder GB; Johnson IS
    J Mol Cell Cardiol; 1972 Oct; 4(5):453-63. PubMed ID: 4404387
    [No Abstract]   [Full Text] [Related]  

  • 13. Responsiveness to drugs and hormones in the murine model of cardiac ontogenesis.
    Roeske WR; Wildenthal K
    Pharmacol Ther; 1981; 14(1):55-66. PubMed ID: 6119710
    [No Abstract]   [Full Text] [Related]  

  • 14. Heart triglyceride and glycogen metabolism: effects of catecholamines, dibutyryl cyclic AMP, theophylline, and fatty acids.
    Crass MF
    Recent Adv Stud Cardiac Struct Metab; 1973; 3():275-90. PubMed ID: 4377600
    [No Abstract]   [Full Text] [Related]  

  • 15. Cardiac actions of glucagon.
    Lucchesi BR
    Circ Res; 1968 Jun; 22(6):777-87. PubMed ID: 4385510
    [No Abstract]   [Full Text] [Related]  

  • 16. Fetal lung in organ culture. IV. Supra-additive hormone interactions.
    Gross I; Wilson CM
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jun; 52(6):1420-5. PubMed ID: 6286561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of glucagon-induced changes in rate, contractility and cyclic AMP levels in isolated cardiac preparations of the rat and guinea pig.
    MacLeod KM; Rodgers RL; McNeill JH
    J Pharmacol Exp Ther; 1981 Jun; 217(3):798-804. PubMed ID: 6262497
    [No Abstract]   [Full Text] [Related]  

  • 18. Hormonal regulation of heme oxygenase induction in avian hepatocyte culture.
    Sardana MK; Sassa S; Kappas A
    Biochem Pharmacol; 1985 Aug; 34(16):2937-44. PubMed ID: 2992523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental factors contributing to the susceptibility to bradycardia in isolated, cultured fetal mouse hearts.
    Maurer M
    Pediatr Res; 1979 Sep; 13(9):1052-7. PubMed ID: 503657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of cyclic nucleotides in the beating response of rat heart cells in culture.
    Ghanbari H; McCarl RL
    J Mol Cell Cardiol; 1976 Jun; 8(6):481-8. PubMed ID: 7680
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.