BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 4375976)

  • 21. The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects.
    Hawkins AR; Lamb HK; Moore JD; Charles IG; Roberts CF
    J Gen Microbiol; 1993 Dec; 139(12):2891-9. PubMed ID: 8126417
    [No Abstract]   [Full Text] [Related]  

  • 22. Polyol metabolism by a caries-conducive Streptococcus: purification and properties of a nicotinamide adenine dinucleotide-dependent mannitol-1-phosphate dehydrogenase.
    Brown AT; Bowles RD
    Infect Immun; 1977 Apr; 16(1):163-73. PubMed ID: 873604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum.
    Kubota T; Tanaka Y; Hiraga K; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8139-49. PubMed ID: 23306642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The anomalous inhibition of shikimate dehydrogenase by analogues of dehydroshikimate.
    Dowsett JR; Middleton B; Corbett JR; Tubbs PK
    Biochim Biophys Acta; 1972 Aug; 276(2):344-9. PubMed ID: 5068816
    [No Abstract]   [Full Text] [Related]  

  • 25. Identification of the isomer of dihydroneopterin triphosphate synthesized by two enzyme fractions from Lactobacillus plantarum.
    Jackson RJ; Shiota T
    J Biol Chem; 1971 Dec; 246(24):7454-9. PubMed ID: 5135311
    [No Abstract]   [Full Text] [Related]  

  • 26. Enzymatic preparation of metabolic intermediates, 3-dehydroquinate and 3-dehydroshikimate, in the shikimate pathway.
    Adachi O; Ano Y; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2006 Dec; 70(12):3081-3. PubMed ID: 17151445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ornithine cyclase (deaminating). Purification of a protein that converts ornithine to proline and definition of the optimal assay conditions.
    Costilow RN; Laycock L
    J Biol Chem; 1971 Nov; 246(21):6655-60. PubMed ID: 4399881
    [No Abstract]   [Full Text] [Related]  

  • 28. Reduced nicotinamide adenine dinucleotide oxidation in Escherichia coli particles. II. NADH dehydrogenases.
    Bragg PD; Hou C
    Arch Biochem Biophys; 1967 Mar; 119(1):202-8. PubMed ID: 4383199
    [No Abstract]   [Full Text] [Related]  

  • 29. Enzyme-substrate complexes of the quinate/shikimate dehydrogenase from Corynebacterium glutamicum enable new insights in substrate and cofactor binding, specificity, and discrimination.
    Höppner A; Schomburg D; Niefind K
    Biol Chem; 2013 Nov; 394(11):1505-16. PubMed ID: 23929881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The identity of shikimate dehydrogenase and quinate dehydrogenase in Aspergillus niger.
    Cain RB
    Biochem J; 1972 Apr; 127(2):15P. PubMed ID: 4342549
    [No Abstract]   [Full Text] [Related]  

  • 31. Quinate metabolism in Pseudomonas aeruginosa.
    Ingledew WM; Tai CC
    Can J Microbiol; 1972 Dec; 18(12):1817-24. PubMed ID: 4630966
    [No Abstract]   [Full Text] [Related]  

  • 32. The branchpoint of pyocyanine biosynthesis.
    Longley RP; Halliwell JE; Campbell JJ; Ingledew WM
    Can J Microbiol; 1972 Sep; 18(9):1357-63. PubMed ID: 4627194
    [No Abstract]   [Full Text] [Related]  

  • 33. [Alanine and glutamate dehydrogenases of Lactobacillus plantarum].
    Galias E; Iakovleva VI; Kretovich VL
    Biokhimiia; 1966; 31(3):636-44. PubMed ID: 4386075
    [No Abstract]   [Full Text] [Related]  

  • 34. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella. Control of quinate oxidation by protocatechuate.
    Tresguerres ME; de Torrontegui G; Ingledew WM; Cánovas JL
    Eur J Biochem; 1970 Jul; 14(3):445-50. PubMed ID: 5479375
    [No Abstract]   [Full Text] [Related]  

  • 35. Ferredoxin- and nicotinamide adenine dinucleotide-dependent H 2 production from ethanol and formate in extracts of S organism isolated from "Methanobacillus omelianskii".
    Reddy CA; Bryant MP; Wolin MJ
    J Bacteriol; 1972 Apr; 110(1):126-32. PubMed ID: 4401599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosynthesis of proline in Pseudomonas aeruginosa. Properties of gamma-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase.
    Krishna RV; Beilstein P; Leisinger T
    Biochem J; 1979 Jul; 181(1):223-30. PubMed ID: 114173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The metabolism of quinate by Acinetobacter calco-aceticus.
    Tresguerres ME; De Torrontegui G; Cánovas JL
    Arch Mikrobiol; 1970; 70(2):110-8. PubMed ID: 5429630
    [No Abstract]   [Full Text] [Related]  

  • 38. Structurally diverse dehydroshikimate dehydratase variants participate in microbial quinate catabolism.
    Peek J; Roman J; Moran GR; Christendat D
    Mol Microbiol; 2017 Jan; 103(1):39-54. PubMed ID: 27706847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic facilitation in vitro by two multienyzme complexes from Neurospora crassa.
    Gaertner FH; Ericson MC; DeMoss JA
    J Biol Chem; 1970 Feb; 245(3):595-600. PubMed ID: 4312868
    [No Abstract]   [Full Text] [Related]  

  • 40. 3-dehydroquinate production by oxidative fermentation and further conversion of 3-dehydroquinate to the intermediates in the shikimate pathway.
    Adachi O; Tanasupawat S; Yoshihara N; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2003 Oct; 67(10):2124-31. PubMed ID: 14586099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.