BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 4376145)

  • 1. Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium.
    Taylor CD; McBride BC; Wolfe RS; Bryant MP
    J Bacteriol; 1974 Nov; 120(2):974-5. PubMed ID: 4376145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic oxidation of mercaptoethanol to isethinic acid and isethionic acid.
    Dupré S; Federici G; Ricci G; Spoto G; Antonucci A; Cavallini D
    Enzyme; 1978; 23(5):307-13. PubMed ID: 213263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere.
    Balch WE; Wolfe RS
    Appl Environ Microbiol; 1976 Dec; 32(6):781-91. PubMed ID: 827241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate.
    Lovley DR; Greening RC; Ferry JG
    Appl Environ Microbiol; 1984 Jul; 48(1):81-7. PubMed ID: 6433795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid).
    Balch WE; Wolfe RS
    J Bacteriol; 1979 Jan; 137(1):256-63. PubMed ID: 104960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium.
    Bobik TA; Wolfe RS
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):60-3. PubMed ID: 3124103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium.
    Balch WE; Wolfe RS
    J Bacteriol; 1979 Jan; 137(1):264-73. PubMed ID: 33148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium.
    Latham MJ; Wolin MJ
    Appl Environ Microbiol; 1977 Sep; 34(3):297-301. PubMed ID: 562131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factor 420-dependent pyridine nucleotide-linked hydrogenase system of Methanobacterium ruminantium.
    Tzeng SF; Wolfe RS; Bryant MP
    J Bacteriol; 1975 Jan; 121(1):184-91. PubMed ID: 234934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is coenzyme M bound to factor F430 in methanogenic bacteria? Experiments with Methanobrevibacter ruminantium.
    Hüster R; Gilles HH; Thauer RK
    Eur J Biochem; 1985 Apr; 148(1):107-11. PubMed ID: 3920049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Levels of coenzyme F420, coenzyme M, hydrogenase, and methylcoenzyme M methylreductase in acetate-grown Methanosarcina.
    Baresi L; Wolfe RS
    Appl Environ Microbiol; 1981 Feb; 41(2):388-91. PubMed ID: 6786217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presence of growth factors for Methanobacterium ruminantium in both gram-positive and gram-negative bacteria.
    Prins RA
    Antonie Van Leeuwenhoek; 1974; 40(4):585-9. PubMed ID: 4219266
    [No Abstract]   [Full Text] [Related]  

  • 13. Factor 420-dependent pyridine nucleotide-linked formate metabolism of Methanobacterium ruminantium.
    Tzing SF; Bryant MP; Wolfe RS
    J Bacteriol; 1975 Jan; 121(1):192-6. PubMed ID: 234935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Culture of the rumen holotrich ciliate Dasytricha ruminantium schuberg.
    Clarke RT; Hungate RE
    Appl Microbiol; 1966 May; 14(3):340-5. PubMed ID: 4961553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heavy metals and other trace elements on the fermentative activity of the rumen microflora and growth of functionally important rumen bacteria.
    Forsberg CW
    Can J Microbiol; 1978 Mar; 24(3):298-306. PubMed ID: 565671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum.
    Gunsalus RP; Romesser JA; Wolfe RS
    Biochemistry; 1978 Jun; 17(12):2374-7. PubMed ID: 98178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function of growth factors for rumen microorganisms. I. Nutritional characteristics of Selenomonas ruminantium.
    Kanegasaki S; Takahashi H
    J Bacteriol; 1967 Jan; 93(1):456-63. PubMed ID: 6020417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen.
    Paynter MJ; Hungate RE
    J Bacteriol; 1968 May; 95(5):1943-51. PubMed ID: 4870286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of bromoethanesulfonate-resistant mutants of Methanococcus voltae: evidence of a coenzyme M transport system.
    Santoro N; Konisky J
    J Bacteriol; 1987 Feb; 169(2):660-5. PubMed ID: 3027043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.