These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 4376145)

  • 21. Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria.
    Flythe MD; Aiken GE
    J Appl Microbiol; 2010 Oct; 109(4):1169-76. PubMed ID: 20456526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory effects of H2 on growth of Clostridium cellobioparum.
    Chung KT
    Appl Environ Microbiol; 1976 Mar; 31(3):342-8. PubMed ID: 779644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation, culture, and fermentation characteristics of Selenomonas ruminantium var. bryantivar. n. from the rumen of sheep.
    Prins RA
    J Bacteriol; 1971 Mar; 105(3):820-5. PubMed ID: 4323298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Function of growth factors for rumen microorganisms. II. Metabolic fate of incorporated fatty acids in Selenomonas ruminantium.
    Kanegasaki S; Takahashi H
    Biochim Biophys Acta; 1968 Jan; 152(1):40-9. PubMed ID: 5689520
    [No Abstract]   [Full Text] [Related]  

  • 25. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria.
    Chen M; Wolin MJ
    Appl Environ Microbiol; 1979 Jul; 38(1):72-7. PubMed ID: 16345418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of propionate formation by Selenomonas ruminantium, a rumen micro-organism.
    Paynter MJ; Elsden SR
    J Gen Microbiol; 1970 Apr; 61(1):1-7. PubMed ID: 5530770
    [No Abstract]   [Full Text] [Related]  

  • 27. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of coenzyme F420 and properties of its hydrolytic fragments.
    Eirich LD; Vogels GD; Wolfe RS
    J Bacteriol; 1979 Oct; 140(1):20-7. PubMed ID: 40952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms.
    Guo YQ; Liu JX; Lu Y; Zhu WY; Denman SE; McSweeney CS
    Lett Appl Microbiol; 2008 Nov; 47(5):421-6. PubMed ID: 19146532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau.
    Wei YQ; Yang HJ; Luan Y; Long RJ; Wu YJ; Wang ZY
    J Appl Microbiol; 2016 Mar; 120(3):571-87. PubMed ID: 26910857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coenzyme M and methylcobalamin in methane biosynthesis: results of model studies.
    Schrauzer GN; Grate JH; Katz RN
    Bioinorg Chem; 1978; 8(1):1-10. PubMed ID: 414787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilization of xylooligosaccharides by selected ruminal bacteria.
    Cotta MA
    Appl Environ Microbiol; 1993 Nov; 59(11):3557-63. PubMed ID: 8285663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.
    Asanuma N; Yokoyama S; Hino T
    Anim Sci J; 2015 Apr; 86(4):378-84. PubMed ID: 25439583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenetic analysis of methyl coenzyme-M reductase detected from the bovine rumen.
    Tatsuoka N; Mohammed N; Mitsumori M; Hara K; Kurihara M; Itabashi H
    Lett Appl Microbiol; 2004; 39(3):257-60. PubMed ID: 15287871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium.
    Scheifinger CC; Wolin MJ
    Appl Microbiol; 1973 Nov; 26(5):789-95. PubMed ID: 4796955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of methanogens isolated from bovine rumen.
    Miller TL; Wolin MJ; Zhao HX; Bryant MP
    Appl Environ Microbiol; 1986 Jan; 51(1):201-2. PubMed ID: 3954338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Possible quorum sensing in the rumen microbial community: detection of quorum-sensing signal molecules from rumen bacteria.
    Mitsumori M; Xu L; Kajikawa H; Kurihara M; Tajima K; Hai J; Takenaka A
    FEMS Microbiol Lett; 2003 Feb; 219(1):47-52. PubMed ID: 12594022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ammonia saturation constants for predominant species of rumen bacteria.
    Schaefer DM; Davis CL; Bryant MP
    J Dairy Sci; 1980 Aug; 63(8):1248-63. PubMed ID: 7419777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between rumen amylolytic and lactate-utilizing bacteria in growth on starch.
    Marounek M; Bartos S
    J Appl Bacteriol; 1987 Sep; 63(3):233-8. PubMed ID: 3429358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of pH on growth rates of rumen amylolytic and lactilytic bacteria.
    Therion JJ; Kistner A; Kornelius JH
    Appl Environ Microbiol; 1982 Aug; 44(2):428-34. PubMed ID: 7125656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.