These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 4377849)

  • 41. Effect of clofibrate on growth & mitochondrial oxidative phosphorylation in regeneration rat liver.
    Mittal B; Kurup CK
    Indian J Biochem Biophys; 1980 Aug; 17(4):290-3. PubMed ID: 7216249
    [No Abstract]   [Full Text] [Related]  

  • 42. Mechanism of glutathione-dependent dechlorination of chloramphenicol and thiamphenicol by cytosol of rat liver.
    Martin JL; Gross BJ; Morris P; Pohl LR
    Drug Metab Dispos; 1980; 8(6):371-5. PubMed ID: 6109602
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxygen-stimulated cytochrome oxidase assembly in hepatocyte monolayer cultures.
    Hare JF; Hodges R
    J Cell Physiol; 1982 Oct; 113(1):23-7. PubMed ID: 6290509
    [No Abstract]   [Full Text] [Related]  

  • 44. Comparative effects of thiamphenicol and chloramphenicol on haemopoiesis and lymphocyte transformation in vitro in man.
    Burgio GR; Keiser G; Becker D; Katz J; Metz J
    Postgrad Med J; 1974 Oct; 50 Suppl 5():88-94. PubMed ID: 4470826
    [No Abstract]   [Full Text] [Related]  

  • 45. Removal of chloramphenicol antibiotics in natural and engineered water systems: Review of reaction mechanisms and product toxicity.
    Lin J; Zhang K; Jiang L; Hou J; Yu X; Feng M; Ye C
    Sci Total Environ; 2022 Dec; 850():158059. PubMed ID: 35985581
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of triiodothyronine and riboflavin deficiency on the rat liver with special reference to mitochondria. A morphologic, morphometric, and cytochemical study by electron microscopy.
    Reith A
    Lab Invest; 1973 Aug; 29(2):216-28. PubMed ID: 4724848
    [No Abstract]   [Full Text] [Related]  

  • 47. Metabolism of thiamphenicol and comparative studies of its urinary and biliary excretion with chloramphenicol in various species.
    Uesugi T; Ikeda M; Hori R; Katayama K; Arita T
    Chem Pharm Bull (Tokyo); 1974 Nov; 22(11):2714-22. PubMed ID: 4468102
    [No Abstract]   [Full Text] [Related]  

  • 48. Optimization and validation of capillary electrophoretic method for the analysis of amphenicols in poultry tissues.
    Kowalski P; Plenis A; Oledzka I
    Acta Pol Pharm; 2008; 65(1):45-50. PubMed ID: 18536172
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chloramphenicol-induced oxidative stress in human neutrophils.
    Páez PL; Becerra MC; Albesa I
    Basic Clin Pharmacol Toxicol; 2008 Oct; 103(4):349-53. PubMed ID: 18684218
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Avenaciolide: a specific inhibitor of glutamate transport in rat liver mitochondria.
    McGivan JD; Chappell JB
    Biochem J; 1970 Feb; 116(4):37P-38P. PubMed ID: 5435480
    [No Abstract]   [Full Text] [Related]  

  • 51. [Kinetics of the antibacterial activity of chloramphenicol and thiamphenicol in vitro and in vivo].
    Yourassowsky E; Monsieur R
    Arzneimittelforschung; 1970 Aug; 20(8):1106-9. PubMed ID: 5536513
    [No Abstract]   [Full Text] [Related]  

  • 52. The effect of nitroso-chloramphenicol on mitochondrial DNA polymerase activity.
    Lim LO; Abou-Khalil WH; Yunis AA; Abou-Khalil S
    J Lab Clin Med; 1984 Aug; 104(2):213-22. PubMed ID: 6747439
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thiamphenicol: use in a developing country part I: studies in bacterial sensitivity.
    Adedeji SO; Coker G; Montefiore D; Osoba AO; Sogbetun AO
    West Afr J Pharmacol Drug Res; 1974 Jan; 1(1):1-7. PubMed ID: 4470288
    [No Abstract]   [Full Text] [Related]  

  • 54. Chloramphenicol succinate, a competitive substrate and inhibitor of succinate dehydrogenase: possible reason for its toxicity.
    Ambekar CS; Lee JS; Cheung BM; Chan LC; Liang R; Kumana CR
    Toxicol In Vitro; 2004 Aug; 18(4):441-7. PubMed ID: 15130601
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antibiotics as tools for metabolic studies. XI. Specific inhibition of ion transport in mitochondria by the monensins.
    Estrada S; Rightmire B; Lardy HA
    Antimicrob Agents Chemother (Bethesda); 1967; 7():279-88. PubMed ID: 5596149
    [No Abstract]   [Full Text] [Related]  

  • 56. Antimitotic action of cornin as a biologically active polypeptide. II. Physiological effects of cornin on dividing cell.
    Nisida I; Murakami TH
    Acta Med Okayama (1952); 1965 Feb; 19(1):11-8. PubMed ID: 4221697
    [No Abstract]   [Full Text] [Related]  

  • 57. Effect of partial hepatectomy and renal impairment of thiamphenicol metabolism in rats.
    Bonanomi L; Gazzaniga A; Zaninelli P
    Pharmacol Res Commun; 1977 Jul; 9(7):609-12. PubMed ID: 896900
    [No Abstract]   [Full Text] [Related]  

  • 58. The myelotoxicity of chloramphenicol: in vitro and in vivo studies: I. In vitro effects on cells in culture.
    Holt DE; Ryder TA; Fairbairn A; Hurley R; Harvey D
    Hum Exp Toxicol; 1997 Oct; 16(10):570-6. PubMed ID: 9363474
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of chloramphenicol infusion on the rate of synthesis of cytochrome oxidase in mammalian embryonic tissue.
    Oerter D; Bass R
    Naunyn Schmiedebergs Arch Pharmacol; 1972; 272(2):239-42. PubMed ID: 4333921
    [No Abstract]   [Full Text] [Related]  

  • 60. Examination of the enantiomeric purity of chloramphenicol and thiamphenicol by thermal analysis.
    Janssen G; Draguet-Brughmans M; Vanderhaeghe H; Bouché R
    J Pharm Belg; 1978; 33(4):256-60. PubMed ID: 712544
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.