These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Ultra high speed photography in laryngeal physiology. MOORE GP; WHITE FD; VON LEDEN H J Speech Hear Disord; 1962 May; 27():165-71. PubMed ID: 14475661 [No Abstract] [Full Text] [Related]
5. Ultra high speed photography in laryngeal research. Moore GP Can J Otolaryngol; 1975; 4(5):793-9. PubMed ID: 1203782 [TBL] [Abstract][Full Text] [Related]
6. A model for vocal fold vibratory motion, contact area, and the electroglottogram. Childers DG; Hicks DM; Moore GP; Alsaka YA J Acoust Soc Am; 1986 Nov; 80(5):1309-20. PubMed ID: 3782607 [TBL] [Abstract][Full Text] [Related]
7. High speed photography of the larynx and film data processing. Koike Y Can J Otolaryngol; 1975; 4(5):800-6. PubMed ID: 1203783 [No Abstract] [Full Text] [Related]
8. [Linguistic function of the larynx]. Lhote E Phonetica; 1973; 28(1):26-41. PubMed ID: 4751547 [No Abstract] [Full Text] [Related]
10. A method of applying Fourier analysis to high-speed laryngoscopy. Granqvist S; Lindestad PA J Acoust Soc Am; 2001 Dec; 110(6):3193-7. PubMed ID: 11785820 [TBL] [Abstract][Full Text] [Related]
11. Cyclicity of laryngeal cavity resonance due to vocal fold vibration. Kitamura T; Takemoto H; Adachi S; Mokhtari P; Honda K J Acoust Soc Am; 2006 Oct; 120(4):2239-49. PubMed ID: 17069319 [TBL] [Abstract][Full Text] [Related]
12. Phonatory vocal fold function in the excised canine larynx. Slavit DH; Lipton RJ; McCaffrey TV Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129 [TBL] [Abstract][Full Text] [Related]
13. Laryngeal flow due to longitudinal sweeping motion of the vocal folds and its contribution to auto-oscillation. Boutin H; Smith J; Wolfe J J Acoust Soc Am; 2015 Jul; 138(1):146-9. PubMed ID: 26233015 [TBL] [Abstract][Full Text] [Related]
14. Observations on laryngeal disease, laryngeal behavior and voice. Moore GP Ann Otol Rhinol Laryngol; 1976; 85(5 Pt.1):553-64. PubMed ID: 791049 [TBL] [Abstract][Full Text] [Related]
15. Electroglottography and vocal fold physiology. Childers DG; Hicks DM; Moore GP; Eskenazi L; Lalwani AL J Speech Hear Res; 1990 Jun; 33(2):245-54. PubMed ID: 2359265 [TBL] [Abstract][Full Text] [Related]
16. The effect of surgically induced recurrent laryngeal nerve palsies on the larynx of the dog and subsequent modification by superior laryngeal nerve section. Farmer CJ; Morrison AW Acta Otolaryngol; 1969; 68(1):156-68. PubMed ID: 5379073 [No Abstract] [Full Text] [Related]
17. [Comparison of microphone, diaphanographic and glottographic signals, using the laryngograph]. Vallancien B; Gautheron B; Pasternak L; Guisez D; Paley B Folia Phoniatr (Basel); 1971; 23(6):371-80. PubMed ID: 5144887 [No Abstract] [Full Text] [Related]
18. Synchronizing videostroboscopic images of human laryngeal vibration with physiological signals. Sercarz JA; Berke GS; Gerratt BR; Kreiman J; Ming Y; Natividad M Am J Otolaryngol; 1992; 13(1):40-4. PubMed ID: 1585984 [TBL] [Abstract][Full Text] [Related]
19. Laryngeal vibrations: measurements of the glottic wave. II. Physiologic variations. TIMCKE R; VON LEDEN H; MOORE P AMA Arch Otolaryngol; 1959 Apr; 69(4):438-44. PubMed ID: 13636585 [No Abstract] [Full Text] [Related]
20. Laryngeal vibrations: measurements of the glottic wave. I. The normal vibratory cycle. TIMCKE R; VON LEDEN H; MOORE P AMA Arch Otolaryngol; 1958 Jul; 68(1):1-19. PubMed ID: 13544677 [No Abstract] [Full Text] [Related] [Next] [New Search]