These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 4378637)

  • 21. RNA synthesis in "relaxed" and "stringent" Escherichia coli. Breakdown of performed ribonucleoprotein particles and subsequent RNA synthesis.
    Dalgarno L; Gros F
    Biochim Biophys Acta; 1968 Mar; 157(1):64-75. PubMed ID: 4868547
    [No Abstract]   [Full Text] [Related]  

  • 22. In vitrosynthesis of alkaline phosphatase monomers directed by E. coli messenger.
    Dohan FC; Rubman RH; Torriani A
    Cold Spring Harb Symp Quant Biol; 1969; 34():768-70. PubMed ID: 4909529
    [No Abstract]   [Full Text] [Related]  

  • 23. Inactivation of purified Escherichia coli RNA polymerase by transfer RNA.
    Bremer H; Yegian C; Konrad M
    J Mol Biol; 1966 Mar; 16(1):94-103. PubMed ID: 5331245
    [No Abstract]   [Full Text] [Related]  

  • 24. [Evidence of in vitro synthesis of alkaline phosphatase in a particulate subcellular system].
    Derieux JC; Guillaume JB
    Ann Inst Pasteur Lille; 1969; 20():41-52. PubMed ID: 4100798
    [No Abstract]   [Full Text] [Related]  

  • 25. [Participation of bacterial membranes in the biosynthesis of DNA and RNA (review). I].
    Burd GI
    Zh Mikrobiol Epidemiol Immunobiol; 1967 Oct; 44(10):124-8. PubMed ID: 4979150
    [No Abstract]   [Full Text] [Related]  

  • 26. Histone-induced changes of protein synthesis in Escherichia coli. II. Effect of histone on alkaline phosphatase synthesis.
    Masnerová E; Strbánová-Necinová S
    Folia Microbiol (Praha); 1973; 18(5):368-75. PubMed ID: 4585940
    [No Abstract]   [Full Text] [Related]  

  • 27. The autodegradation of 32-P-labelled ribosomes from Escherichia coli.
    Wade HE; Lovett S; Robinson HK
    Biochem J; 1964 Oct; 93(1):121-8. PubMed ID: 5320082
    [No Abstract]   [Full Text] [Related]  

  • 28. [Biogenesis and secretion of alkaline phosphatase and its mutants in Escherichia coli. III. Substitution of N-terminal amino acids of alkaline phosphatase affect its biogenesis].
    Karamyshev AL; Kalinin AE; Khmel'nitskiĭ MI; Shliapnikov MG; Ksenzenko VN; Nesmeianova MA
    Mol Biol (Mosk); 1994; 28(2):374-82. PubMed ID: 7514265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Metabolism of ribonucleic acids in Escherichia coli deficient in phosphate].
    Julien J; Rosset R; Monier R
    Bull Soc Chim Biol (Paris); 1967; 49(2):131-45. PubMed ID: 4861601
    [No Abstract]   [Full Text] [Related]  

  • 30. [Structural and biochemical characteristics of Escherichia coli cells with various levels of secretable alkaline phosphatase].
    Mikhaleva NI; Gulevskaia SA; Nesmeianova MA; Fikhte BA
    Mikrobiologiia; 1983; 52(1):131-5. PubMed ID: 6341783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alkaline phosphatase subunits and their dimerization in vivo.
    Torriani A
    J Bacteriol; 1968 Oct; 96(4):1200-7. PubMed ID: 4879556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A possible mechanism for initiation of protein synthesis.
    Nakamoto T; Kalokofsky D
    Proc Natl Acad Sci U S A; 1966 Mar; 55(3):606-13. PubMed ID: 5329011
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of actinomycin D and 5-fluorouracil on the formation of enzymes in Bacillus subtilis.
    Kadowaki K; Hosoda J; Maruo B
    Biochim Biophys Acta; 1965 Jun; 103(2):311-8. PubMed ID: 4953695
    [No Abstract]   [Full Text] [Related]  

  • 34. The regulatory process in the de-repression of enzyme synthesis. Alkaline phosphatase of Bacillus subtilis.
    Moses V
    Biochem J; 1967 Jun; 103(3):650-9. PubMed ID: 4167433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the RC gene product on constitutive enzyme synthesis.
    Hall BG; Gallant JA
    J Mol Biol; 1971 Oct; 61(1):271-3. PubMed ID: 4947694
    [No Abstract]   [Full Text] [Related]  

  • 36. A complex between initiation factor IF2, guanosine triphosphate, and fMet-tRNA: an intermediate in initiation complex formation.
    Lockwood AH; Chakraborty PR; Maitra U
    Proc Natl Acad Sci U S A; 1971 Dec; 68(12):3122-6. PubMed ID: 4943554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of repression of methionine biosynthesis in Escherichia coli. I. The role of methionine, s-adenosylmethionine, and methionyl-transfer ribonucleic acid in repression.
    Ahmed A
    Mol Gen Genet; 1973 Jul; 123(4):299-324. PubMed ID: 4580267
    [No Abstract]   [Full Text] [Related]  

  • 38. Intracellular repressor of alkaline phosphatase.
    Bowne SW; Ondrey JA; Wise JL
    Nature; 1966 Aug; 211(5052):980. PubMed ID: 5338767
    [No Abstract]   [Full Text] [Related]  

  • 39. Co-regulation of the phosphate-binding protein and alkaline phosphatase synthesis in Escherichia coli.
    Yagil E; Silberstein N; Gerdes RG
    J Bacteriol; 1976 Jul; 127(1):656-9. PubMed ID: 776945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The biological function of the TpPsipCpGp loop (loop IV) of tRNAs in various ribosome-dependent reactions.
    Richter D; Erdmann VA; Sprinzl M
    Acta Biol Med Ger; 1974; 33(5-6):609-11. PubMed ID: 4469375
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.