These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4379197)

  • 1. Metabolism of other D- and L-hydroxy acids.
    Gordon RS
    Ann N Y Acad Sci; 1965 Jul; 119(3):927-41. PubMed ID: 4379197
    [No Abstract]   [Full Text] [Related]  

  • 2. Antagonism in the simultaneous oxidation of D-amino acids by D-amino acid oxidase.
    LaRue TA; Gerulat BF; Berg CP
    Arch Biochem Biophys; 1967 Jul; 121(1):22-8. PubMed ID: 4382394
    [No Abstract]   [Full Text] [Related]  

  • 3. Study of the metabolism of 2-hydroxy-4-amino-butyric acid, a product of gamma-hydroxyglutamic acid decarboxylation.
    Bouthillier LP; Pushpathadam JJ; Binette Y
    Can J Biochem; 1966 Feb; 44(2):171-7. PubMed ID: 5940556
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis of essential amino acids from their alpha-keto analogues by perfused rat liver and muscle.
    Walser M; Lund P; Ruderman NB; Coulter AW
    J Clin Invest; 1973 Nov; 52(11):2865-77. PubMed ID: 4748513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue.
    Baudhuin P; Beaufay H; Rahman-Li Y; Sellinger OZ; Wattiaux R; Jacques P; De Duve C
    Biochem J; 1964 Jul; 92(1):179-84. PubMed ID: 4378796
    [No Abstract]   [Full Text] [Related]  

  • 6. Alpha-hydroxy acid oxidases in subcellular fractions from rat kidney.
    Domenech CE; Blanco A
    Biochem Biophys Res Commun; 1967 Jul; 28(2):209-14. PubMed ID: 6035497
    [No Abstract]   [Full Text] [Related]  

  • 7. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on plasma amino- and keto-acid concentrations and branched-chain keto-acid dehydrogenase activity.
    Langer S; Scislowski PW; Brown DS; Dewey P; Fuller MF
    Br J Nutr; 2000 Jan; 83(1):49-58. PubMed ID: 10703464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bacterial degradation of pantothenic acid. IV. Enzymatic conversion of aldopantoate to alpha-ketoisovalerate.
    Magee PT; Snell EE
    Biochemistry; 1966 Feb; 5(2):409-16. PubMed ID: 4287371
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolism of alpha-keto analogues of essential amino acids.
    Nutr Rev; 1974 May; 32(5):147-9. PubMed ID: 4597511
    [No Abstract]   [Full Text] [Related]  

  • 10. Blood-brain barrier transport of the alpha-keto acid analogs of amino acids.
    Steele RD
    Fed Proc; 1986 Jun; 45(7):2060-4. PubMed ID: 3519290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indispensable but insufficient role of renal D-amino acid oxidase in chiral inversion of NG-nitro-D-arginine.
    Xin YF; Li X; Hao B; Gong N; Sun WQ; Konno R; Wang YX
    Chem Biodivers; 2010 Jun; 7(6):1413-23. PubMed ID: 20564560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Regulation of carbohydrate metabolism in vivo. II. Action of ethanol].
    Nordmann R; Nordmann J
    Bull Soc Chim Biol (Paris); 1969 Sep; 51(4):791-8. PubMed ID: 4310157
    [No Abstract]   [Full Text] [Related]  

  • 13. Regional differences for the D-amino acid oxidase-catalysed oxidation of D-methionine in chicken small intestine.
    Brachet P; Puigserver A
    Comp Biochem Physiol B; 1992 Apr; 101(4):509-11. PubMed ID: 1351830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of renal D-amino-acid oxidase in pharmacokinetics of D-leucine.
    Hasegawa H; Matsukawa T; Shinohara Y; Konno R; Hashimoto T
    Am J Physiol Endocrinol Metab; 2004 Jul; 287(1):E160-5. PubMed ID: 15026304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of transamination in methionine oxidation in the rat.
    Mitchell AD; Benevenga NJ
    J Nutr; 1978 Jan; 108(1):67-78. PubMed ID: 619045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients.
    Beaufay H; Jacques P; Baudhuin P; Sellinger OZ; Berthet J; De Duve C
    Biochem J; 1964 Jul; 92(1):184-205. PubMed ID: 4378797
    [No Abstract]   [Full Text] [Related]  

  • 17. Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosomes or in particles containing urate oxidase, D-amino acid oxidase, and catalase.
    Baudhuin P; Beaufay H; De Duve C
    J Cell Biol; 1965 Jul; 26(1):219-43. PubMed ID: 4379260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Dynamics of ketone body metabolism in healthy rats].
    Bässler KH; Wagner G; Heicke B
    Z Gesamte Exp Med Einschl Exp Chir; 1970; 153(2):131-5. PubMed ID: 5473449
    [No Abstract]   [Full Text] [Related]  

  • 19. A deuterium surface coil NMR study of the metabolism of D-methionine in the liver of the anesthetized rat.
    London RE; Gabel SA
    Biochemistry; 1988 Oct; 27(20):7864-9. PubMed ID: 2462910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control mechanism in the rat liver enzyme system converting L-methionine to L-cystine. 3. Noncompetitive inhibition of cystathionine synthetase-serine dehydratase by elemental sulfur and competitive inhibition of cystathionase-homoserine dehydratase by L-cysteine and L-cystine.
    Kato A; Ogura M; Suda M
    J Biochem; 1966 Jan; 59(1):40-8. PubMed ID: 5939831
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.