These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4379217)

  • 1. Comparative carbohydrate catabolism and methemoglobin reduction in pig and human erythrocytes.
    Rivkin SE; Simon ER
    J Cell Physiol; 1965 Aug; 66(1):49-56. PubMed ID: 4379217
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of methaemoglobinaemia in horse and human erythrocytes.
    Robin H; Harley JD
    Aust J Exp Biol Med Sci; 1967 Feb; 45(1):77-88. PubMed ID: 4382737
    [No Abstract]   [Full Text] [Related]  

  • 3. [Influencing by phenylhydroxylamine of the pentosephosphate pathway and glycolysis in erythrocytes during methemoglobin formation].
    Burger A; Wagner J; Uehleke H; Götz E
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 256(3):333-47. PubMed ID: 4385221
    [No Abstract]   [Full Text] [Related]  

  • 4. [Limiting factors of methemoglobin formation through phenylhydroxylamine in the erythrocytes of cattle, sheep and swine].
    Wagner J; Burger A
    Naunyn Schmiedebergs Arch Pharmakol Exp Pathol; 1966; 254(2):138-51. PubMed ID: 4383121
    [No Abstract]   [Full Text] [Related]  

  • 5. Methemoglobin formation and reduction in man and various animal species.
    Smith JE; Beutler E
    Am J Physiol; 1966 Feb; 210(2):347-50. PubMed ID: 5901473
    [No Abstract]   [Full Text] [Related]  

  • 6. Hereditary methemoglobinemia, toxic methemoglobinemia and the reduction of methemoglobin.
    Jaffé ER; Neumann G
    Ann N Y Acad Sci; 1968 Jul; 151(2):795-806. PubMed ID: 4313162
    [No Abstract]   [Full Text] [Related]  

  • 7. [Reduction of methemoglobin in young and old human erythrocytes incubated in various media].
    Zachara B; Raszewski W
    Acta Physiol Pol; 1971; 22(1):101-9. PubMed ID: 5576225
    [No Abstract]   [Full Text] [Related]  

  • 8. The role of the polyol pathway in methaemoglobin reduction in human red cells.
    Travis SF; Morrison AD; Clements RS; Winegrad AI; Oski FA
    Br J Haematol; 1974 Aug; 27(4):597-605. PubMed ID: 4371564
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of inosine in prevention of methaemoglobinaemia in the pig: in vitro studies.
    Sartorelli P; Paltrinieri S; Agnes F; Baglioni T
    Zentralbl Veterinarmed A; 1996 Oct; 43(8):489-93. PubMed ID: 8940895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic properties of erythrocytes of normal and genetically anemic mice.
    Hutton JJ; Bernstein SE
    Biochem Genet; 1973 Nov; 10(3):297-307. PubMed ID: 4148156
    [No Abstract]   [Full Text] [Related]  

  • 11. [The glucose metabolism in erythrocytes during the methemoglobin formation through phenylhydroxylamine].
    Wagner J; Burger A; Uehleke H; Götz E
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):536-48. PubMed ID: 4176856
    [No Abstract]   [Full Text] [Related]  

  • 12. Reduction of methemoglobin in human adult and cord blood erythrocytes incubated with glucose or inosine.
    Lee WM; Bragg FE; Jaffé ER
    Proc Soc Exp Biol Med; 1967 Jan; 124(1):214-6. PubMed ID: 6017769
    [No Abstract]   [Full Text] [Related]  

  • 13. [On the significance of the 2,3-diphosphoglycerate cycle in erythrocytes: relationships between methemoglobin- and 2,6-dichlorphenolindophenol-reduction, glycolysis and 2,3,-diphosphoglycerate formation].
    Schröter W; Winter P
    Blut; 1966 Oct; 14(1):16-29. PubMed ID: 4289092
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the energy metabolism of opossum Didelphis virginiana erythrocytes--III. Metabolic depletion with 2-deoxyglucose markedly accelerates methemoglobin reduction in opossum but not in human erythrocytes.
    Bethlenfalvay NC; Lima JE; Chadwick E; Stewart I
    Comp Biochem Physiol A Comp Physiol; 1988; 89(2):119-24. PubMed ID: 2896090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical changes on storage of blood. Decrease in rate of methemoglobin reduction and increase in oxygen affinity on storage of ACD blood.
    Ioppolo C; Amiconi G; Currell DL; Maffei G; Zolla L; Antonini E
    Vox Sang; 1974; 27(5):403-10. PubMed ID: 4420776
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on erythrocyte glycolysis. VI. Control of glycolysis by ATP level in human erythrocytes.
    Saito T; Minakami S
    J Biochem; 1967 Feb; 61(2):211-9. PubMed ID: 6058200
    [No Abstract]   [Full Text] [Related]  

  • 17. [Detection of G6PD deficiency by tests of methemoglobin reduction].
    Orsini A; Perrimond H; Boyer G
    Mars Med; 1967; 104(4):325-9. PubMed ID: 4393180
    [No Abstract]   [Full Text] [Related]  

  • 18. Hexose monophosphate shunt-stimulated reduction of methemoglobin by divicine.
    Benatti U; Guida L; Grasso M; Tonetti M; De Flora A; Winterbourn CC
    Arch Biochem Biophys; 1985 Nov; 242(2):549-56. PubMed ID: 4062295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. METABOLIC ASPECTS OF RED CELLS IN CONGENITAL NON-SPHEROCYTIC HAEMOLYTIC ANAEMIA.
    FORNAINI G; BIANCHINI E; LEONCINI G; FANTONI A
    Br J Haematol; 1964 Jan; 10():23-35. PubMed ID: 14115588
    [No Abstract]   [Full Text] [Related]  

  • 20. Metabolic regulation in enzyme-deficient red cells.
    Buc HA; Leroux JP; Garreau H; Marchand JC; Cartier P
    Enzyme; 1974; 18(1):19-36. PubMed ID: 4152958
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.