These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4379217)

  • 21. [Metabolism of human erythrocytes after pre-incubation in hyperthermia].
    Banaschak H
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):469-76. PubMed ID: 4176846
    [No Abstract]   [Full Text] [Related]  

  • 22. Restoration of red cell catalase activity by glucose metabolism after exposure to a vitamin K analog.
    Sullivan SG; McMahon S; Stern A
    Biochem Pharmacol; 1979 Dec; 28(23):3403-7. PubMed ID: 43733
    [No Abstract]   [Full Text] [Related]  

  • 23. [On the meaning of the cell metabolism for the increased O2-consumption of nitrite pretreated human erythrocytes in the presence of norepinephrine].
    Csernovszky M; Banaschak H; Bluth R
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(2):253-8. PubMed ID: 4174959
    [No Abstract]   [Full Text] [Related]  

  • 24. Methemoglobin formation and reduction in canine erythrocytes characterized by inherited high Na+, K(+)-ATPase activity with normal and high glutathione concentrations.
    Ogawa E; Horii Y; Honda M; Takahashi R
    J Vet Med Sci; 1994 Oct; 56(5):873-7. PubMed ID: 7865586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyridine nucleotides in human erythrocytes in different metabolic states.
    Omachi A; Scott CB; Hegarty H
    Biochim Biophys Acta; 1969 Jun; 184(1):139-47. PubMed ID: 4389327
    [No Abstract]   [Full Text] [Related]  

  • 26. The reduction of methemoglobin in human erythrocytes incubated with purine nucleosides.
    JAFFE ER
    J Clin Invest; 1959 Sep; 38(9):1555-63. PubMed ID: 14406502
    [No Abstract]   [Full Text] [Related]  

  • 27. The NADH/NADPH-methemoglobin reduction system or erythrocytes.
    Hultquist DE; Sannes LJ; Schafer DA
    Prog Clin Biol Res; 1981; 55():291-309. PubMed ID: 7027268
    [No Abstract]   [Full Text] [Related]  

  • 28. Comparative aspects of methemoglobin formation and reduction in opossum (Didelphis virginiana) and human erythrocytes.
    Bethlenfalvay NC; Waterman MR; Lima JE; Waldrup T
    Comp Biochem Physiol A Comp Physiol; 1983; 75(4):635-9. PubMed ID: 6137318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Changes in intermediate metabolism in experimental chronic hypoxia].
    Hăulică A; Ababei L
    Fiziol Norm Patol; 1971; 17(1):77-84. PubMed ID: 4396561
    [No Abstract]   [Full Text] [Related]  

  • 30. [On the mechanism of lactate formation in swine erythrocytes under the effect of various substrates].
    Reinauer H; Jansen W; Bruns FH
    Blut; 1967 Jun; 15(3):133-41. PubMed ID: 6026724
    [No Abstract]   [Full Text] [Related]  

  • 31. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes.
    Sannes LJ; Hultquist DE
    Biochim Biophys Acta; 1978 Dec; 544(3):547-54. PubMed ID: 31928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The special behavior of equine erythrocytes connected with the methemoglobin regulation.
    Medeiros LO; Nürmberger R; Medeiros LF
    Comp Biochem Physiol B; 1984; 78(4):869-71. PubMed ID: 6467915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [On the mechanism of ascorbic acid induced methemoglobin reduction of human erythrocytes (author's transl)].
    Waller HD; Benöhr HC; Tigges FJ
    Klin Wochenschr; 1977 Oct; 55(19):955-64. PubMed ID: 926709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Ribose metabolism and ATP content of normal and methemoglobin-containing anuclear erythrocytes].
    LACHHEIN L; GRADE K; MATTHIES H
    Acta Biol Med Ger; 1961; 7():434-42. PubMed ID: 14461368
    [No Abstract]   [Full Text] [Related]  

  • 35. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [On the problem of cancer diagnosis from metabolic activities of erythrocytes. Ability for glycolysis and methemoglobin formation].
    Blum KU; Fabricius W
    Krebsarzt; 1967; 22(2):96-102. PubMed ID: 5585820
    [No Abstract]   [Full Text] [Related]  

  • 37. Inherited methemoglobinemia (enzyme deficiencies).
    Waller HD
    Humangenetik; 1970; 9(3):217-8. PubMed ID: 4393777
    [No Abstract]   [Full Text] [Related]  

  • 38. [Consumption of glucose, galactose, ribose and inosine by erythrocytes from adults and umbilical cord blood].
    LACHHEIN L; GRUBE E; JOHNIGK C; MATTHIES H
    Klin Wochenschr; 1961 Aug; 39():875. PubMed ID: 13758057
    [No Abstract]   [Full Text] [Related]  

  • 39. [On the catalytic effect of epinephrine in methemoglobin reduction].
    Banaschak H
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(3):277-82. PubMed ID: 4157864
    [No Abstract]   [Full Text] [Related]  

  • 40. [Diffusion rate of glycolysis in the erythrocytes of the newborn infant].
    Stanulovic M; Miletic D; Vukovic D
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):408-13. PubMed ID: 4176836
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.