These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4380933)

  • 1. Mammalian galactose dehydrogenase. II. Properties, substrate specificity, and developmental changes.
    Cuatrecasas P; Segal S
    J Biol Chem; 1966 Dec; 241(24):5910-8. PubMed ID: 4380933
    [No Abstract]   [Full Text] [Related]  

  • 2. [Study of the polyoldehydrogenases of the yeast Candida tropicalis during growth on various substrates].
    Shakhova IK
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1975; (8):89-91. PubMed ID: 241429
    [No Abstract]   [Full Text] [Related]  

  • 3. Auxiliary pathways of galactose metabolism. Identification of reaction products of hexose 6-phosphate dehydrogenase and of "galactose dehydrogenase".
    Srivastava SK; Beutler E
    J Biol Chem; 1969 Dec; 244(23):6377-82. PubMed ID: 4390966
    [No Abstract]   [Full Text] [Related]  

  • 4. D-galactose dehydrogenase from Pseudomonas saccharophila. Purification, properties and structure.
    Wengenmayer F; Ueberschär KH; Kurz G; Sund H
    Eur J Biochem; 1973 Dec; 40(1):49-61. PubMed ID: 4149284
    [No Abstract]   [Full Text] [Related]  

  • 5. Absorption of carbohydrates by intestine of Ascaris lumbricoides in vitro.
    Sanhueza P; Palma R; Oberhauser E; Orrego H; Parsons DS; Salinas A
    Nature; 1968 Sep; 219(5158):1062-3. PubMed ID: 5673367
    [No Abstract]   [Full Text] [Related]  

  • 6. Influence of the thyroid gland on the accumulation of sugars in rat intestinal mucosa during absorption.
    Bronk JR; Parsons DS
    J Physiol; 1965 Jul; 179(2):323-32. PubMed ID: 5853894
    [No Abstract]   [Full Text] [Related]  

  • 7. Enzymatic characterization and comparison of three sugar dehydrogenases from a pseudomonad.
    Cline AL; Hu AS
    J Biol Chem; 1965 Nov; 240(11):4493-7. PubMed ID: 5845848
    [No Abstract]   [Full Text] [Related]  

  • 8. -D-glucose:NAD(P) oxidoreductase (1.1.1.47) activity in aqueous extracts from the stomach muscles of domestic birds.
    Brzĕk K; Karpiak S
    Arch Immunol Ther Exp (Warsz); 1971; 19(3):403-10. PubMed ID: 4398519
    [No Abstract]   [Full Text] [Related]  

  • 9. [Sugar dehydrogenases in mammalian liver. II. Distribution pattern of sugar dehydrogenases in mammalian livers].
    Schiwara HW; Domschke W; Domagk GF
    Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1582-5. PubMed ID: 4393643
    [No Abstract]   [Full Text] [Related]  

  • 10. Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro.
    Bachelard HS
    J Neurochem; 1971 Feb; 18(2):213-22. PubMed ID: 5550086
    [No Abstract]   [Full Text] [Related]  

  • 11. D-Galactose dehydrogenase from Pseudomonas fluorescens. Purification, properties and structure.
    Blachnitzky EO; Wengenmayer F; Kurz G
    Eur J Biochem; 1974 Sep; 47(2):235-50. PubMed ID: 4153311
    [No Abstract]   [Full Text] [Related]  

  • 12. Kinetic studies on microsomal glucose dehydrogenase in rat liver.
    Endou H; Neuhoff V
    Hoppe Seylers Z Physiol Chem; 1975 Sep; 356(9):1381-96. PubMed ID: 240770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption of carbohydrates from the intestine of the rat.
    Kohn P; Dawes ED; Duke JW
    Biochim Biophys Acta; 1965 Sep; 107(2):358-62. PubMed ID: 5880559
    [No Abstract]   [Full Text] [Related]  

  • 14. Aldehyde reductase from rat liver is a 3 alpha-hydroxysteroid dehydrogenase.
    Pietruszko R; Chen FF
    Biochem Pharmacol; 1976 Dec; 25(24):2721-5. PubMed ID: 12759
    [No Abstract]   [Full Text] [Related]  

  • 15. Purification and properties of a nicotinamide adenine dinucleotide phosphate-linked aldohexose dehydrogeanse from Gluconobacter cerinus.
    Avigad G; Alroy Y; Englard S
    J Biol Chem; 1968 Apr; 243(8):1936-41. PubMed ID: 4384672
    [No Abstract]   [Full Text] [Related]  

  • 16. Binding of NAD and NADP dimers to NAD- and NADP-dependent dehydrogenases.
    Kovár J; Klukanová H
    Biochim Biophys Acta; 1984 Jul; 788(1):98-109. PubMed ID: 6378255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coenzyme specificity of mammalian liver D-glycerate dehydrogenase.
    Van Schaftingen E; Draye JP; Van Hoof F
    Eur J Biochem; 1989 Dec; 186(1-2):355-9. PubMed ID: 2689175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identity of dimeric dihydrodiol dehydrogenase as NADP(+)-dependent D-xylose dehydrogenase in pig liver.
    Aoki S; Ishikura S; Asada Y; Usami N; Hara A
    Chem Biol Interact; 2001 Jan; 130-132(1-3):775-84. PubMed ID: 11306093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction and regulation of D-xylose catabolizing enzymes in Fusarium oxysporum.
    Singh A; Schügerl K
    Biochem Int; 1992 Nov; 28(3):481-8. PubMed ID: 1482390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of monosaccharides by guinea-pig cerebral-cortex slices.
    Joanny P; Corriol J; Hillman H
    Biochem J; 1969 Apr; 112(3):367-71. PubMed ID: 5801307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.