These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 4381616)

  • 1. The effect of glutathione and glucose-6-phosphate on fatty acid synthesis in E. coli.
    Brock DJ; Bloch K
    Biochem Biophys Res Commun; 1966 Nov; 25(4):473-80. PubMed ID: 4381616
    [No Abstract]   [Full Text] [Related]  

  • 2. Control of the synthesis of long-chain fatty acids and triacetic acid in E. coli.
    Brock DJ; Bloch K
    Biochem Biophys Res Commun; 1966 Jun; 23(5):775-80. PubMed ID: 4381470
    [No Abstract]   [Full Text] [Related]  

  • 3. Stimulation of fatty acid biosynthesis by phosphorylated sugars.
    Wakil SJ; Goldman JK; Williamson IP; Toomey RE
    Proc Natl Acad Sci U S A; 1966 Apr; 55(4):880-7. PubMed ID: 4379858
    [No Abstract]   [Full Text] [Related]  

  • 4. Pool sizes of metabolic intermediates and their relation to glucose repression of beta-galactosidase synthesis in Escherichia coli.
    Prevost C; Moses V
    Biochem J; 1967 May; 103(2):349-57. PubMed ID: 4382255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state concentrations of glucose-6-phosphate, 6-phosphogluconate, and reduced nicotinamide adenine dinucleotide phosphate in strains of Escherichia coli sensitive and resistant to catabolite repression.
    Hsie AW; Rickenberg HV; Schulz DW; Kirsch WM
    J Bacteriol; 1969 Jun; 98(3):1407-8. PubMed ID: 4389233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid mutant of E. coli lacking a beta-hydroxydecanoyl thioester dehydrase.
    Silbert DF; Vagelos PR
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1579-86. PubMed ID: 4867667
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of hydrogen peroxide and glutathione in glucose oxidation by the thyroid.
    Bénard B; DeGroot LJ
    Biochim Biophys Acta; 1969 Jun; 184(1):48-53. PubMed ID: 4389331
    [No Abstract]   [Full Text] [Related]  

  • 8. Catabolite repression in Escherichia coli: the role of glucose 6-phosphate.
    Hsie AW; Rickenberg HV
    Biochem Biophys Res Commun; 1967 Nov; 29(3):303-10. PubMed ID: 4864799
    [No Abstract]   [Full Text] [Related]  

  • 9. TPNH and pyridoxal-5'-phosphate: activators of ADP-glucose pyrophosphorylase of Escherichia coli B1.
    Gentner N; Greenberg E; Preiss J
    Biochem Biophys Res Commun; 1969 Aug; 36(3):373-80. PubMed ID: 4390399
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of NADPH availability on free fatty acid production in Escherichia coli.
    Li W; Wu H; Li M; San KY
    Biotechnol Bioeng; 2018 Feb; 115(2):444-452. PubMed ID: 28976546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose-6-phosphate and AMP; effectors of proline biosynthesis in Escherichia coli.
    Baich A
    Biochem Biophys Res Commun; 1970 May; 39(3):544-50. PubMed ID: 4912201
    [No Abstract]   [Full Text] [Related]  

  • 12. [The stabilization of glucose-6-phosphate dehydrogenase in the rat mammary gland].
    Scharfschwerdt H; Schulz W; Rapoport S
    Acta Biol Med Ger; 1969; 23(4):579-90. PubMed ID: 4393272
    [No Abstract]   [Full Text] [Related]  

  • 13. Mechanism of mercuric chloride resistance in microorganisms. 3. Purification and properties of a mercuric ion reducing enzyme from Escherichia coli bearing R factor.
    Izaki K; Tashiro Y; Funaba T
    J Biochem; 1974 Mar; 75(3):591-9. PubMed ID: 4151997
    [No Abstract]   [Full Text] [Related]  

  • 14. [Electroretinographic and neurochemical observations with 2-deoxyglucose and glucose-6-phosphate].
    Ponte F; Lauricella M; Guarneri R; Bonavita V
    Ann Ottalmol Clin Ocul; 1967 Jan; 93(1):19-30. PubMed ID: 4387416
    [No Abstract]   [Full Text] [Related]  

  • 15. An ADP-glucsoe pyrophosphorylase with lower apparent affinities for substract and effector molecules in an Escherichia coli B mutant deficient in glycogen synthesis.
    Preiss J; Sabraw A; Greenberg E
    Biochem Biophys Res Commun; 1971 Jan; 42(2):180-6. PubMed ID: 4395969
    [No Abstract]   [Full Text] [Related]  

  • 16. Requirement of cyclic AMP for induction of GMP reductase in Escherichia coli.
    Benson CE; Brehmeyer BA; Gots JS
    Biochem Biophys Res Commun; 1971 Jun; 43(5):1089-94. PubMed ID: 4327955
    [No Abstract]   [Full Text] [Related]  

  • 17. The CR mutation and catabolite repression in Escherichia coli.
    Rickenberg HV; Hsie AW; Janecek J
    Biochem Biophys Res Commun; 1968 May; 31(4):603-8. PubMed ID: 4872144
    [No Abstract]   [Full Text] [Related]  

  • 18. [Effect of proflavine on the rate of enymatic synthesis of isoleucyl-ribonucleic acid in "Escherichia coli"].
    Wérenne J; Grosjean H
    Arch Int Physiol Biochim; 1966 Nov; 74(5):944-5. PubMed ID: 4166011
    [No Abstract]   [Full Text] [Related]  

  • 19. Diphosphopyridine nucleotide: a cofactor for the polynucleotide-joining enzyme from Escherichia coli.
    Olivera BM; Lehman IR
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1700-4. PubMed ID: 4291945
    [No Abstract]   [Full Text] [Related]  

  • 20. Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant.
    Mittl PR; Berry A; Scrutton NS; Perham RN; Schulz GE
    J Mol Biol; 1993 May; 231(2):191-5. PubMed ID: 8510142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.