These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 4382288)

  • 1. Participation of the lysine pathway in dipicolinic acid synthesis in Bacillus cereus T.
    Aronson AI; Henderson E; Tincher A
    Biochem Biophys Res Commun; 1967 Feb; 26(4):454-60. PubMed ID: 4382288
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of dipicolinic acid biosynthesis in sporulating Bacillus cereus. Characterization of enzymic changes and analysis of mutants.
    Forman M; Aronson A
    Biochem J; 1972 Feb; 126(3):503-13. PubMed ID: 4627586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consequences of lysine oversynthesis in Pseudomonas mutants insensitive to feedback inhibition. Lysine excretion or endogenous induction of a lysine-catabolic pathway.
    Hermann M; Thevenet NJ; Coudert-Maratier MM; Vandecasteele JP
    Eur J Biochem; 1972 Oct; 30(1):100-6. PubMed ID: 4404468
    [No Abstract]   [Full Text] [Related]  

  • 4. [Isolation and properties of a lysine-sensitive mutant of Escherichia coli devoid of aspartokinase].
    Patte JC; Cohen GN
    Biochim Biophys Acta; 1965 Jun; 99(3):561-3. PubMed ID: 4378825
    [No Abstract]   [Full Text] [Related]  

  • 5. Dipicolinic acid-less mutants of Bacillus cereus.
    Wise J; Swanson A; Halvorson HO
    J Bacteriol; 1967 Dec; 94(6):2075-6. PubMed ID: 4965371
    [No Abstract]   [Full Text] [Related]  

  • 6. Isotopic study of control of the lysine biosynthetic pathway during sporulation of Bacillus cereus.
    Rogers SW; Peterson DE; Bernlohr RW; Stahly DP
    J Bacteriol; 1972 Jul; 111(1):94-7. PubMed ID: 4204913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Amino acid production by microorganisms. Control of biosynthesis of asparaginic amino acid and production of L-lysine].
    Nakayama K
    Tanpakushitsu Kakusan Koso; 1968 Sep; 13(10):876-90. PubMed ID: 4387467
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzymatic deacetylation of N-acetylglucosamine residues in peptidoglycan from Bacillus cereus cell walls.
    Araki Y; Fukuoka S; Oba S; Ito E
    Biochem Biophys Res Commun; 1971 Nov; 45(3):751-8. PubMed ID: 4256847
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes in nicotinamide adenine dinucleotide concentration of Bacillus cereus during growth.
    London J
    Biochim Biophys Acta; 1966 Aug; 124(2):241-5. PubMed ID: 4291016
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of biotin on glutamate production and fatty acid composition in Bacillus cereus 14B22.
    Hubbard JS; Hall AN
    Can J Microbiol; 1968 Oct; 14(10):1039-48. PubMed ID: 4971461
    [No Abstract]   [Full Text] [Related]  

  • 11. Osmoadaptative accumulation of Nɛ-acetyl-β-lysine in green sulfur bacteria and Bacillus cereus CECT 148T.
    Triadó-Margarit X; Vila X; Galinski EA
    FEMS Microbiol Lett; 2011 May; 318(2):159-67. PubMed ID: 21371089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the existence of two isozymes of aconitate hydratase and its correlation with 59Fe uptake in Bacillus cereus T.
    Sharma D; Gopalakrishna Y; Nanawati GC; Gollakota KG
    Indian J Biochem Biophys; 1975 Sep; 12(3):213-5. PubMed ID: 815164
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional characterization and phylogenetic analysis of acquired and intrinsic macrolide phosphotransferases in the Bacillus cereus group.
    Wang C; Sui Z; Leclercq SO; Zhang G; Zhao M; Chen W; Feng J
    Environ Microbiol; 2015 May; 17(5):1560-73. PubMed ID: 25059531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of a homoserineless bradytroph of Neurospora crassa: demonstration of an altered aspartate beta-semialdehyde dehydrogenase.
    Jenkins MB; Garner HR
    Biochim Biophys Acta; 1967 Jul; 141(2):287-95. PubMed ID: 4383000
    [No Abstract]   [Full Text] [Related]  

  • 15. A substance produced by competent Bacillus cereus 569 cells that affects transformability.
    Felkner IC; Wyss O
    Biochem Biophys Res Commun; 1964 May; 16(1):94-9. PubMed ID: 4959036
    [No Abstract]   [Full Text] [Related]  

  • 16. Biosynthesis of dipicolinic acid in Bacillus subtilis.
    Chasin LA; Szulmajster J
    Biochem Biophys Res Commun; 1967 Dec; 29(5):648-54. PubMed ID: 4965659
    [No Abstract]   [Full Text] [Related]  

  • 17. Genetic and biochemical studies of genes controlling the synthesis of threonine and methionine in Saccharomyces.
    Robichon-Szulmajster H; Surdin Y; Mortimer RK
    Genetics; 1966 Mar; 53(3):609-19. PubMed ID: 4380684
    [No Abstract]   [Full Text] [Related]  

  • 18. Pyridine-2,6-dicarboxylic acid (dipicolinic acid) formation in Bacillus subtilis. I. Non-enzymatic formation of dipicolinic acid from pyruvate and aspartic semialdehyde.
    Kimura K
    J Biochem; 1974 May; 75(5):961-7. PubMed ID: 4153456
    [No Abstract]   [Full Text] [Related]  

  • 19. Separation, characteristics and minimal amino-acid requirements of six variants derived from a strain of Bacillus cereus.
    Moore WB
    J Gen Microbiol; 1965 Sep; 40(3):329-42. PubMed ID: 4955876
    [No Abstract]   [Full Text] [Related]  

  • 20. Induction of phosphoribomutase in Bacillus cereus growing on nucleosides.
    Ipata PL; Sgarrella F; Catalani R; Tozzi MG
    Biochim Biophys Acta; 1983 Jan; 755(2):253-6. PubMed ID: 6299371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.