These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 438298)

  • 1. Fast and slow fractions of K+ flux in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1979 Mar; 98(3):539-52. PubMed ID: 438298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple fractions of sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Sep; 104(3):443-59. PubMed ID: 7419615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical temperature transition of K+-Na+ exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Apr; 103(1):87-95. PubMed ID: 7430260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium-sodium distribution in human lymphocytes: description by the association-induction hypothesis.
    Negendank W; Shaller C
    J Cell Physiol; 1979 Jan; 98(1):95-105. PubMed ID: 762204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of metabolic inhibition on ion contents and sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1982 Mar; 110(3):291-9. PubMed ID: 6282900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does reduced external K+ concentration affect the rate of Na+ efflux? Evidence against the K-Na coupled pump but in support of the association-induction hypothesis.
    Ling GN
    Physiol Chem Phys; 1978; 10(4):353-65. PubMed ID: 311014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation fluxes and volume regulation by human lymphocytes.
    Bui AH; Wiley JS
    J Cell Physiol; 1981 Jul; 108(1):47-54. PubMed ID: 7263767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate of potassium-sodium exchange by human lymphocytes: prediction of the cooperative adsorption model.
    Negendank W; Karreman G
    J Cell Physiol; 1979 Jan; 98(1):107-12. PubMed ID: 762188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-exchange of sodium in human lymphocytes.
    Negendank W; Shaller C
    Biophys J; 1984 Sep; 46(3):331-42. PubMed ID: 6487733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative interaction among cell surface sites: evidence in support of the surface adsorption theory of cellular electrical potentials.
    Ling GN; Fisher A
    Physiol Chem Phys Med NMR; 1983; 15(5):369-78. PubMed ID: 6609378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid changes in bidirectional K+ fluxes preceding DMSO-induced granulocytic differentiation of HL-60 human leukemic cells.
    Gargus JJ; Adelberg EA; Slayman CW
    J Cell Physiol; 1984 Jul; 120(1):83-90. PubMed ID: 6588052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potasssium transport in human blood lymphocytes treated with phytohemagglutinin.
    Segel GB; Lichtman MA
    J Clin Invest; 1976 Dec; 58(6):1358-69. PubMed ID: 993349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous efflux of K+ and Na+ from frog sartorius muscle freed of extracellular fluids: evidence for rapidly exchanging Na+ from the cells.
    Ling GN; Walton CL
    Physiol Chem Phys; 1975; 7(6):501-15. PubMed ID: 1083537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle dependent changes in potassium transport.
    Mills B; Tupper JT
    J Cell Physiol; 1976 Sep; 89(1):123-32. PubMed ID: 956277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of external sodium on ouabain-insensitive K influx in fresh human red blood cells.
    Pfliegler G; Kelemen E; Szabó B
    Acta Biochim Biophys Acad Sci Hung; 1984; 19(3-4):281-8. PubMed ID: 6545635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The physical state of potassium in the human lymphocyte: a review.
    Negendank W
    Scanning Microsc; 1989 Sep; 3(3):865-72; discussion 872-5. PubMed ID: 2694357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The role of ionic transporters in the long-term regulation of the water content in animal cells. The mathematical model and real lymphoid cells].
    Vereninov AA; Glushankova LN; Rubashkin AA
    Tsitologiia; 1995; 37(12):1151-66. PubMed ID: 8714351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative physiology of cellular ion and volume regulation.
    Schmidt-Nielsen B
    J Exp Zool; 1975 Oct; 194(1):207-19. PubMed ID: 811755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motional characteristics of K+ and Na+ in intact and sucrose-permeabilized rat lymphocytes.
    Bogner P; Berke T; Kellermayer M
    Physiol Chem Phys Med NMR; 1992; 24(4):281-8. PubMed ID: 1296210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physical theory of the living state: application to water and solute distribution.
    Ling GN
    Scanning Microsc; 1988 Jun; 2(2):899-913. PubMed ID: 3399856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.