These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 4383140)

  • 1. Hydroxymethylation of the benzene ring. II. Sequential formation of p-hydroxyaniline via hydroxymethylation of aniline by microsomes.
    Sloane NH; Heinemann M
    Biochim Biophys Acta; 1967 Jun; 141(1):47-54. PubMed ID: 4383140
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydroxymethylation of the benzene ring. 1. Microsomal formation of phenol via prior hydroxymethylation of benzene.
    Sloane NH
    Biochim Biophys Acta; 1965 Oct; 107(3):599-602. PubMed ID: 4379638
    [No Abstract]   [Full Text] [Related]  

  • 3. Hydroxymethylation of the benzene ring. V. NADPH requirement for aryl hydroxymethylation by a C-1 donor bound to a macromolecule.
    Sloane NH; Heinemann M
    Biochim Biophys Acta; 1970 Feb; 201(2):384-6. PubMed ID: 4392158
    [No Abstract]   [Full Text] [Related]  

  • 4. Determination of initial rates of cortisol 2-alpha- and 6-beta-hydroxylation by hepatic microsomal preparations in guinea pigs: effect of phenobarbital in two genetic types.
    Burstein S
    Endocrinology; 1968 Mar; 82(3):547-54. PubMed ID: 4384436
    [No Abstract]   [Full Text] [Related]  

  • 5. The metabolism of hydroxychlorpromazines by rat liver microsomes.
    Daly JW; Manian AA
    Biochem Pharmacol; 1967 Nov; 16(11):2131-6. PubMed ID: 4383838
    [No Abstract]   [Full Text] [Related]  

  • 6. [Electron transport in rat liver microsomes. The role of ionic interactions].
    Bachmanova GI; Chernobrovkina TV; Panchenko LF; Archakov AI; Karuzina II
    Biokhimiia; 1973; 38(5):949-53. PubMed ID: 4149971
    [No Abstract]   [Full Text] [Related]  

  • 7. Interaction between liver microsomes and compounds capable of undergoing enzymic hydroxylation.
    Orrenius S; Ernster L
    Life Sci; 1967 Jul; 6(14):1473-82. PubMed ID: 4382650
    [No Abstract]   [Full Text] [Related]  

  • 8. Production of a methemoglobin-forming metabolite of 3,4-dichloroaniline by liver in vitro.
    Chow YK; Murphy SD
    Bull Environ Contam Toxicol; 1975 Jan; 13(1):9-13. PubMed ID: 236794
    [No Abstract]   [Full Text] [Related]  

  • 9. Drug biotransformation reactions in the human fetal adrenal gland.
    Juchau MR; Pedersen MG
    Life Sci II; 1973 Mar; 12(5):193-204. PubMed ID: 4633079
    [No Abstract]   [Full Text] [Related]  

  • 10. Formation and metabolism of 3-beta-hydroxycholest-5-en-7-one and cholest-5-ene-3-beta, 7-beta-diol. Bile acids and steroids 192.
    Björkhem I; Einarsson K; Johansson G
    Acta Chem Scand; 1968; 22(5):1594-605. PubMed ID: 4387349
    [No Abstract]   [Full Text] [Related]  

  • 11. Microsomal flavoprotein-catalyzed N-oxidation of arylamines.
    Ziegler DM; McKee EM; Poulsen LL
    Drug Metab Dispos; 1973; 1(1):314-21. PubMed ID: 4149399
    [No Abstract]   [Full Text] [Related]  

  • 12. Migration of deuterium during hydroxylation of aromatic substrates by liver microsomes. I. Influence of ring substitutents.
    Daly J; Jerina D; Witkop B
    Arch Biochem Biophys; 1968 Nov; 128(2):517-27. PubMed ID: 5698035
    [No Abstract]   [Full Text] [Related]  

  • 13. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene.
    Smart RC; Zannoni VG
    Mol Pharmacol; 1984 Jul; 26(1):105-11. PubMed ID: 6749127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral studies of drug interaction with hepatic microsomal cytochrome.
    Schenkman JB; Remmer H; Estabrook RW
    Mol Pharmacol; 1967 Mar; 3(2):113-23. PubMed ID: 4382749
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolism and mechanism of action of oestrogens. XII. Structure and mechanism of formation of water-soluble and protein-bound metabolites of oestrone in rat-liver microsomes in vitro and in vivo.
    Marks F; Hecker E
    Biochim Biophys Acta; 1969; 187(2):250-65. PubMed ID: 4390401
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects on hepatic microsomal N- and C-oxygenation of aromatic amines by in vivo corticosteroid or aminofluorene treatment, diet, or stress.
    Arrhenius E
    Cancer Res; 1968 Feb; 28(2):264-73. PubMed ID: 5641519
    [No Abstract]   [Full Text] [Related]  

  • 17. Dual effect of ethyl isocyanide on drug hydroxylation by liver microsomes.
    Imai Y; Sato R
    J Biochem; 1968 Mar; 63(3):380-9. PubMed ID: 4386148
    [No Abstract]   [Full Text] [Related]  

  • 18. [Differential induction of microsomal N- and p-hydroxylation of aniline and N-ethylamiline in rabbits].
    Lange G
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 257(2):230-56. PubMed ID: 4385672
    [No Abstract]   [Full Text] [Related]  

  • 19. Genetic aspects of adrenal and hepatic cortisol 2alpha- and 6beta-hydroxylation in guinea pigs: Developmental pattern and effect of substrate concentration.
    Burstein S
    Endocrinology; 1970 Apr; 86(4):851-62. PubMed ID: 4391767
    [No Abstract]   [Full Text] [Related]  

  • 20. Hydroxylation of gamma-butyrobetaine to carnitine in rat liver.
    Lindstedt G
    Biochemistry; 1967 May; 6(5):1271-82. PubMed ID: 4382529
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.