BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 4383199)

  • 21. Carbon-monoxide oxidation in cell-free extracts of Clostridium pasteurianum.
    Thauer RK; Fuchs G; Käufer B; Schnitker U
    Eur J Biochem; 1974 Jun; 45(2):343-9. PubMed ID: 4152801
    [No Abstract]   [Full Text] [Related]  

  • 22. Studies on methemoglobin reductase. II. The purification and molecular properties of reduced nicotinamide adenine dinucleotide-dependent methemoglobin reductase.
    Kuma F; Inomata H
    J Biol Chem; 1972 Jan; 247(2):556-60. PubMed ID: 4333267
    [No Abstract]   [Full Text] [Related]  

  • 23. Two reduced nicotinamide adenine dinucleotide dehydrogenases from the photosynthetic bacterium, Rhodospirillum rubrum.
    Horio T; Bartsch RG; Kakuno T; Kamen MD
    J Biol Chem; 1969 Nov; 244(21):5899-909. PubMed ID: 4310827
    [No Abstract]   [Full Text] [Related]  

  • 24. Reduced nicotinamide-adenine dinucleotide oxidation in Escherichia coli particles. 3. Cellular location of menadione reductase and ATPase activities.
    Bragg PD; Hou C
    Can J Biochem; 1967 Jul; 45(7):1107-24. PubMed ID: 4292061
    [No Abstract]   [Full Text] [Related]  

  • 25. COMPARISION OF SOLUBLE REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE OXIDASES FROM CELLS AND SPORES OF CLOSTRIDIUM BOTULINUM.
    GREEN JH; SADOFF HL
    J Bacteriol; 1965 Jun; 89(6):1499-505. PubMed ID: 14291587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nicotinamide adenine dinucleotide-dependent formate dehydrogenase from Rhodopseudomonas palustris.
    Yoch DC; Lindstrom ES
    Arch Mikrobiol; 1969; 67(2):182-8. PubMed ID: 4318273
    [No Abstract]   [Full Text] [Related]  

  • 27. Identification and partial characterization of inositol: NAD+ epimerase and inosose: NAD(P)H reductase from the fat body of the American cockroach, Periplaneta americana L.
    Hipps PP; Sehgal RK; Holland WH; Sherman WR
    Biochemistry; 1973 Nov; 12(23):4507-12. PubMed ID: 4149348
    [No Abstract]   [Full Text] [Related]  

  • 28. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. 3. The Escherichia coli hemoflavoprotein: catalytic parameters and the sequence of electron flow.
    Siegel LM; Davis PS; Kamin H
    J Biol Chem; 1974 Mar; 249(5):1572-86. PubMed ID: 4150390
    [No Abstract]   [Full Text] [Related]  

  • 29. NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD(+)-dependent dehydrogenase biosensing.
    Gai PP; Zhao CE; Wang Y; Abdel-Halim ES; Zhang JR; Zhu JJ
    Biosens Bioelectron; 2014 Dec; 62():170-6. PubMed ID: 24999994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Properties of the NAD-specific hydrogenase from Hydrogenomonas H 16].
    Pfitzner J; Linke HA; Schlegel HG
    Arch Mikrobiol; 1970; 71(1):67-78. PubMed ID: 4394007
    [No Abstract]   [Full Text] [Related]  

  • 31. The purification and properties of the respiratory-chain reduced nicotinamide--adenine dinucleotide dehydrogenase of Torulopsis utilis.
    Tottmar SO; Ragan CI
    Biochem J; 1971 Oct; 124(5):853-65. PubMed ID: 4399788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Some properties of hepatic reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase.
    Iyanagi T; Mason HS
    Biochemistry; 1973 Jun; 12(12):2297-308. PubMed ID: 4145653
    [No Abstract]   [Full Text] [Related]  

  • 33. Isolation and some properties of NAD+ reductase of the green photosynthetic bacterium Prosthecochloris aestuarii.
    Shioi Y; Takamiya K; Nishimura M
    J Biochem; 1976 Feb; 79(2):361-71. PubMed ID: 5430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrimination of redox-responsible biomolecules by a single molecular sensor.
    Oh J; Hong JI
    Org Lett; 2013 Mar; 15(6):1210-3. PubMed ID: 23461730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GLYCOLIC ACID OXIDATION BY ESCHERICHIA COLI ADAPTED TO GLYCOLATE.
    FURUYA A; HAYASHI JA
    J Bacteriol; 1963 May; 85(5):1124-31. PubMed ID: 14044004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductases.
    Iyanagi T; Makino N; Mason HS
    Biochemistry; 1974 Apr; 13(8):1701-10. PubMed ID: 4151581
    [No Abstract]   [Full Text] [Related]  

  • 37. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine.
    Kutzbach C; Stokstad EL
    Biochim Biophys Acta; 1971 Dec; 250(3):459-77. PubMed ID: 4399897
    [No Abstract]   [Full Text] [Related]  

  • 38. Studies on yeast sulfite reductase. 3. Further characterization.
    Yoshimoto A; Sato R
    Biochim Biophys Acta; 1970 Nov; 220(2):190-205. PubMed ID: 4395131
    [No Abstract]   [Full Text] [Related]  

  • 39. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NAD + -dependent formation of 2-amino- 4 -hydroxy-6-carboxypteridine from 2-amino-4-hydroxy-6-formylpteridine by cell-free extracts of Escherichia coli.
    Suzuki Y; Mitsuda H
    Biochim Biophys Acta; 1971 Aug; 242(2):504-6. PubMed ID: 4400748
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.