These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 438458)

  • 1. Environmental fate of rice paddy pesticides in a model ecosystem.
    Tomizawa C; Kazano H
    J Environ Sci Health B; 1979; 14(2):121-52. PubMed ID: 438458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of global scale multimedia contaminant fate model: incorporating paddy field compartment.
    Wei Y; Nishimori M; Kobara Y; Akiyama T
    Sci Total Environ; 2008 Nov; 406(1-2):219-26. PubMed ID: 18789490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Runoff characteristics of pesticides from paddy fields and reduction of risk to the aquatic environment.
    Ebise S; Inoue T
    Water Sci Technol; 2002; 45(9):127-31. PubMed ID: 12079094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the fate of pesticides in paddy rice-fish pond farming systems in northern Vietnam.
    La N; Lamers M; Nguyen VV; Streck T
    Pest Manag Sci; 2014 Jan; 70(1):70-9. PubMed ID: 23483671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The slow recovery of San Francisco Bay from the legacy of organochlorine pesticides.
    Connor MS; Davis JA; Leatherbarrow J; Greenfield BK; Gunther A; Hardin D; Mumley T; Oram JJ; Werme C
    Environ Res; 2007 Sep; 105(1):87-100. PubMed ID: 16930588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pesticide residues in coastal waters affected by rice paddy effluents temporarily stored in a wastewater reservoir in southern Japan.
    AƱasco NC; Koyama J; Uno S
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):352-60. PubMed ID: 19609592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring.
    Vu SH; Ishihara S; Watanabe H
    Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Daily variation of pesticides in surface water of a small river flowing through paddy field area.
    Tanabe A; Kawata K
    Bull Environ Contam Toxicol; 2009 Jun; 82(6):705-10. PubMed ID: 19290454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of Chironomus riparius larvae to assess effects of pesticides from rice fields in adjacent freshwater ecosystems.
    Faria MS; Nogueira AJ; Soares AM
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):218-26. PubMed ID: 17223193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of organophosphorus pesticides in soils with special reference to unaerobic soil conditions.
    Tomizawa C
    Environ Qual Saf; 1975; 4():117-27. PubMed ID: 1193050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a multiresidue method for determination of 82 pesticides in water using GC.
    Mamun MI; Park JH; Choi JH; Kim HK; Choi WJ; Han SS; Hwang K; Jang NI; Assayed ME; El-Dib MA; Shin HC; Abd El-Aty AM; Shim JH
    J Sep Sci; 2009 Feb; 32(4):559-74. PubMed ID: 19212978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of pretilachlor herbicide and pyridaphenthion insecticide on aquatic organisms in model streams.
    Takahashi Y; Houjyo T; Kohjimoto T; Takagi Y; Mori K; Muraoka T; Annoh H; Ogiyama K; Funaki Y; Tanaka K; Wada Y; Fujita T
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):227-39. PubMed ID: 16890290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissipation of epoxiconazole in the paddy field under subtropical conditions of Taiwan.
    Lin HT; Wong SS; Li GC
    J Environ Sci Health B; 2001 Jul; 36(4):409-20. PubMed ID: 11495019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas chromatographic analysis of organochlorine pesticides in Lake Anasagar of Ajmer, Rajasthan (India).
    Charan PD; Sharma R; Sharma KC
    J Environ Sci Eng; 2010 Jan; 52(1):37-40. PubMed ID: 21114105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model.
    Nakano Y; Yoshida T; Inoue T
    Water Res; 2004 Jul; 38(13):3023-30. PubMed ID: 15261540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the distribution and flux of pesticides in waterways associated with a ricefield--marshland ecosystem.
    Ginn TM; Fisher FM
    Pestic Monit J; 1974 Jun; 8(1):23-32. PubMed ID: 4438055
    [No Abstract]   [Full Text] [Related]  

  • 19. Residues and dynamics of pymetrozine in rice field ecosystem.
    Li C; Yang T; Huangfu W; Wu Y
    Chemosphere; 2011 Feb; 82(6):901-4. PubMed ID: 21074245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204.
    Kim MC; Ahn JH; Shin HC; Kim T; Ryu TH; Kim DH; Song HG; Lee GH; Ka JO
    J Microbiol Biotechnol; 2008 Feb; 18(2):207-18. PubMed ID: 18309263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.