These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 43846)
1. Physiology of glia: glial-neuronal interactions. Stewart RM; Rosenberg RN Int Rev Neurobiol; 1979; 21():275-309. PubMed ID: 43846 [No Abstract] [Full Text] [Related]
2. Neuron-glia relationships in human and experimental epilepsy: a biochemical point of view. Grisar TM Adv Neurol; 1986; 44():1045-73. PubMed ID: 2871719 [TBL] [Abstract][Full Text] [Related]
3. Amino acid transport in isolated neurons and glia. Hamberger A; Nyström B; Sellström A; Woiler CT Adv Exp Med Biol; 1976; 69():221-36. PubMed ID: 7926 [TBL] [Abstract][Full Text] [Related]
4. Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Hertz L Prog Neurobiol; 1979; 13(3):277-323. PubMed ID: 42117 [No Abstract] [Full Text] [Related]
5. Neuron-target cell interactions. Smith BH; Kreutzberg GW Neurosci Res Program Bull; 1976 Jul; 14(3):209-453. PubMed ID: 59908 [No Abstract] [Full Text] [Related]
6. Increased myelination related enzymatic activities in neuron-glial heterokarya. Fan K; Uzman BG Brain Res; 1981 Apr; 210(1-2):388-95. PubMed ID: 6261875 [TBL] [Abstract][Full Text] [Related]
7. [Mechanisms of cyclic purine nucleotide and prostaglandin interaction with the mediator processes on central neurons]. Sudakov KV; Sherstnev VV Vestn Akad Med Nauk SSSR; 1979; (8):23-5. PubMed ID: 40359 [No Abstract] [Full Text] [Related]
8. Neuronal-glial contributions to transmitter amino acid metabolism: studies with kainic acid-induced lesions of rat striatum. Nicklàs WJ; Nunez R; Berl S; Duvoisin R J Neurochem; 1979 Oct; 33(4):839-44. PubMed ID: 39980 [No Abstract] [Full Text] [Related]
9. Glial heterogeneity and developing neurotransmitter systems. Lauder JM; Liu J Perspect Dev Neurobiol; 1994; 2(3):239-50. PubMed ID: 7850357 [TBL] [Abstract][Full Text] [Related]
10. Neurotransmitters and neuromodulators and their mediation by cyclic nucleotides. Siggins GR Adv Exp Med Biol; 1979; 116():41-64. PubMed ID: 38646 [TBL] [Abstract][Full Text] [Related]
11. Oligodendrocyte proliferation and CNS myelination in cultures containing dissociated embryonic neuroglia and dorsal root ganglion neurons. Wood PM; Williams AK Brain Res; 1984 Feb; 314(2):225-41. PubMed ID: 6704750 [TBL] [Abstract][Full Text] [Related]
13. Criteria for the identification of central neurotransmitters, and their application to studies with some nerve tissue preparations in vitro. Orrego F Neuroscience; 1979; 4(8):1037-57. PubMed ID: 40157 [No Abstract] [Full Text] [Related]
14. Intracellular amino acid content of neuronal, glial, and non-neural cell cultures: the relationship to glutamic acid compartmentation. Drummond RJ; Phillips AT J Neurochem; 1977 Jul; 29(1):101-8. PubMed ID: 886314 [No Abstract] [Full Text] [Related]
15. Apoptotic glial cell death and kinetics in the spinal cord of the myelin-deficient rat. Lipsitz D; Goetz BD; Duncan ID J Neurosci Res; 1998 Feb; 51(4):497-507. PubMed ID: 9514203 [TBL] [Abstract][Full Text] [Related]
16. Glial-neuron interactions and the regulation of myelin formation. Doyle JP; Colman DR Curr Opin Cell Biol; 1993 Oct; 5(5):779-85. PubMed ID: 7694602 [TBL] [Abstract][Full Text] [Related]
17. Differences in neuronal and glial cell phenotypic expression in neuron-glia cocultures: influence of glia-conditioned media and living glial cell substrata. Lee K; Kentroti S; Vernadakis A Brain Res Bull; 1992 Jun; 28(6):861-70. PubMed ID: 1353404 [TBL] [Abstract][Full Text] [Related]
18. Growth regulator from spinal cord: produced in cultures of glial cells. Kagen LJ; Miller SL; Labissiere A Brain Res; 1981 Oct; 254(3):397-409. PubMed ID: 6116532 [TBL] [Abstract][Full Text] [Related]