These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 4385544)

  • 1. Biological consequences of the replacement of choline by ethanolamine in the cell wall of Pneumococcus: chanin formation, loss of transformability, and loss of autolysis.
    Tomasz A
    Proc Natl Acad Sci U S A; 1968 Jan; 59(1):86-93. PubMed ID: 4385544
    [No Abstract]   [Full Text] [Related]  

  • 2. DNA uptake during genetic transformation and the growing zone of the cell envelope.
    Tomasz A; Zanati E; Ziegler R
    Proc Natl Acad Sci U S A; 1971 Aug; 68(8):1848-52. PubMed ID: 4399665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autolysis and cell wall degradation in a choline-independent strain of Streptococcus pneumoniae.
    Severin A; Horne D; Tomasz A
    Microb Drug Resist; 1997; 3(4):391-400. PubMed ID: 9442493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple antibiotic resistance in a bacterium with suppressed autolytic system.
    Tomasz A; Albino A; Zanati E
    Nature; 1970 Jul; 227(5254):138-40. PubMed ID: 4393335
    [No Abstract]   [Full Text] [Related]  

  • 5. Abnormal autolytic enzyme in a pneumococus with altered teichoic acid composition.
    Tomasz A; Westphal M
    Proc Natl Acad Sci U S A; 1971 Nov; 68(11):2627-30. PubMed ID: 4399413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radioautographic evidence for equatorial wall growth in a gram-positive bacterium. Segregation of choline-3H-labeled teichoic acid.
    Briles EB; Tomasz A
    J Cell Biol; 1970 Dec; 47(3):786-90. PubMed ID: 4395735
    [No Abstract]   [Full Text] [Related]  

  • 7. On the physiological functions of teichoic acids.
    Tomasz A; Westphal M; Briles EB; Fletcher P
    J Supramol Struct; 1975; 3(1):1-16. PubMed ID: 239275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choline in the cell wall of a bacterium: novel type of polymer-linked choline in Pneumococcus.
    Tomasz A
    Science; 1967 Aug; 157(3789):694-7. PubMed ID: 4381896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of choline and ethanolamine in Ehrlich ascites-carcinoma cells.
    Sung CP; Johnstone RM
    Biochem J; 1967 Nov; 105(2):497-503. PubMed ID: 5626092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased incorporation of methyl-14C-choline, methyl-14C-methionine and 1,2-14C-ethanolamine into phospholipids by liver slices from pregnant rats.
    Weinhold PA
    Endocrinology; 1969 Dec; 85(6):1216-7. PubMed ID: 5388415
    [No Abstract]   [Full Text] [Related]  

  • 11. The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase.
    Bradbeer C
    J Biol Chem; 1965 Dec; 240(12):4675-81. PubMed ID: 5846988
    [No Abstract]   [Full Text] [Related]  

  • 12. The clostridial fermentations of choline and ethanolamine. 1. Preparation and properties of cell-free extracts.
    Bradbeer C
    J Biol Chem; 1965 Dec; 240(12):4669-74. PubMed ID: 5846987
    [No Abstract]   [Full Text] [Related]  

  • 13. Susceptibility to experimental atherosclerosis and the methylation of ethanolamine 1,2-C14 to phosphatidyl choline.
    PILGERAM LO; GREENBERG DM
    Science; 1954 Nov; 120(3123):760-1. PubMed ID: 13205220
    [No Abstract]   [Full Text] [Related]  

  • 14. Uptake and incorporation of choline and ethanolamine into lipoteichoic acid and teichoic acid by the choline-independent mutant JY2190 of Streptococcus pneumoniae.
    Leopold K; Fischer W
    FEMS Microbiol Lett; 1998 Dec; 169(2):355-9. PubMed ID: 9868781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choline biogenesis I. Utilization of [1:2-14C]aminoethanol in cell-free homogenates.
    ALEXANDER GJ
    J Neurochem; 1961 Mar; 6():277-84. PubMed ID: 14448276
    [No Abstract]   [Full Text] [Related]  

  • 16. The incorporation of 32P-labelled phosphoric esters of glycerol, choline, ethanolamine, and serine into phospholipids of guinea pigs tissues in vitro.
    CHOJNACKI T; KORZYBSKI T
    Acta Biochim Pol; 1961; 8():111-22. PubMed ID: 14448697
    [No Abstract]   [Full Text] [Related]  

  • 17. Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae.
    Ibrahim YM; Kerr AR; Silva NA; Mitchell TJ
    Infect Immun; 2005 Feb; 73(2):730-40. PubMed ID: 15664911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion.
    Moscoso M; García E; López R
    J Bacteriol; 2006 Nov; 188(22):7785-95. PubMed ID: 16936041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do D-glucosamine and D-galactosamine form part of specific receptor sites for competence substance on cell wall of Pneumococcus?
    Kohoutová M; Kocourek J
    Nature; 1974 Feb; 247(5439):277-9. PubMed ID: 4150438
    [No Abstract]   [Full Text] [Related]  

  • 20. The comparative distribution of C14-labeled 2-dimethylaminoethanol and choline in the mouse.
    GROTH DP; BAIN JA; PFEIFFER CC
    J Pharmacol Exp Ther; 1958 Dec; 124(4):290-5. PubMed ID: 13611630
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.