These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 4387386)

  • 1. The conversion of S-n-propyl-L-cysteine into its sulphoxide by microsomal preparations from rat liver.
    Ebbon GP; Callaghan P
    Biochem J; 1968 Dec; 110(3):33P. PubMed ID: 4387386
    [No Abstract]   [Full Text] [Related]  

  • 2. The enzymatic conversion of sulfoxide to sulfone: the oxidation of methyl tetrahydrofurfuryl sulfoxide to the corresponding sulfone by rat liver microsomes.
    Fujita T; Suzuoki Z
    Biochem Biophys Res Commun; 1967 Sep; 28(5):827-32. PubMed ID: 4383217
    [No Abstract]   [Full Text] [Related]  

  • 3. Oxidative degradation of diazinon by rat liver microsomes.
    Nakatsugawa T; Tolman NM; Dahm PA
    Biochem Pharmacol; 1969 Mar; 18(3):685-8. PubMed ID: 4388967
    [No Abstract]   [Full Text] [Related]  

  • 4. Biochemical studies of toxic agents. The metabolism of 1- and 2-bromopropane in rats.
    Barnsley EA; Grenby TH; Young L
    Biochem J; 1966 Jul; 100(1):282-8. PubMed ID: 5965256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the sulphoxidation of cimetidine and etintidine by rat and human liver microsomes.
    Schulz M; Schmoldt A
    Xenobiotica; 1988 Aug; 18(8):983-9. PubMed ID: 3142156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsomal oxidation of alpha-thiocarboxylic acids to sulfoxides.
    Lee YC; Hayes MG; McCormicck DB
    Biochem Pharmacol; 1970 Nov; 19(11):2825-32. PubMed ID: 4397733
    [No Abstract]   [Full Text] [Related]  

  • 7. S-(1,2,2-trichlorovinyl)-L-cysteine sulfoxide, a reactive metabolite of S-(1,2,2-Trichlorovinyl)-L-cysteine formed in rat liver and kidney microsomes, is a potent nephrotoxicant.
    Elfarra AA; Krause RJ
    J Pharmacol Exp Ther; 2007 Jun; 321(3):1095-101. PubMed ID: 17347324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metabolism of S-methyl-L-cysteine.
    Sklan NM; Barnsley EA
    Biochem J; 1968 Mar; 107(2):217-23. PubMed ID: 5641877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfoxide reduction: in vitro reduction of oxyprothepine-8-sulfoxide by rat hepatic cytosolic and microsomal enzymes.
    Helia O; Pauliková I
    Pharmazie; 1993 Oct; 48(10):784-5. PubMed ID: 7903462
    [No Abstract]   [Full Text] [Related]  

  • 10. Acetylation of S-substituted cysteines by a rat liver and kidney microsomal N-acetyltransferase.
    Green RM; Elce JS
    Biochem J; 1975 May; 147(2):283-9. PubMed ID: 241322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymic studies of bile acid metabolism. I. 6-beta-Hydroxylation of chenodeoxycholic and taurochenodeoxycholic acids by microsomal preparations of rat liver.
    Voigt W; Thomas PJ; Hsia SL
    J Biol Chem; 1968 Jun; 243(12):3493-9. PubMed ID: 4385344
    [No Abstract]   [Full Text] [Related]  

  • 12. Characteristics of the cysteinesulfinate-forming enzyme system in rat liver.
    Ewetz L; Sörbo B
    Biochim Biophys Acta; 1966 Nov; 128(2):296-305. PubMed ID: 4382020
    [No Abstract]   [Full Text] [Related]  

  • 13. Sulfoxidation of mercapturic acids derived from tri- and tetrachloroethene by cytochromes P450 3A: a bioactivation reaction in addition to deacetylation and cysteine conjugate beta-lyase mediated cleavage.
    Werner M; Birner G; Dekant W
    Chem Res Toxicol; 1996; 9(1):41-9. PubMed ID: 8924615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism and mechanism of action of oestrogens. XII. Structure and mechanism of formation of water-soluble and protein-bound metabolites of oestrone in rat-liver microsomes in vitro and in vivo.
    Marks F; Hecker E
    Biochim Biophys Acta; 1969; 187(2):250-65. PubMed ID: 4390401
    [No Abstract]   [Full Text] [Related]  

  • 15. [Metabolism and mechanism of action of estrogens. X. Relations between estrogen metabolism and lipid peroxidation in rat liver microsomes].
    Marks F; Hecker E
    Hoppe Seylers Z Physiol Chem; 1968 May; 349(5):523-32. PubMed ID: 4386960
    [No Abstract]   [Full Text] [Related]  

  • 16. Sulfoxidation of cysteine and mercapturic acid conjugates of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A).
    Altuntas TG; Park SB; Kharasch ED
    Chem Res Toxicol; 2004 Mar; 17(3):435-45. PubMed ID: 15025515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparative studies on the metabolism of 17-epitestosterone and testosterone in slices and cell fraction of rat liver].
    Stárka L; Breuer H
    Hoppe Seylers Z Physiol Chem; 1968 Dec; 349(12):1698-710. PubMed ID: 4387677
    [No Abstract]   [Full Text] [Related]  

  • 18. Biochemical studies of toxic agents. 15. The biosynthesis of ethylmercapturic acid sulphoxide.
    Barnsley EA; Thomson AE; Young L
    Biochem J; 1964 Mar; 90(3):588-96. PubMed ID: 5833366
    [No Abstract]   [Full Text] [Related]  

  • 19. [Studies on anti-inflammatory agents. XVI. The N-debenzylation of 2-amino-3-ethoxycarbonyl-6-benzyl-4,5,6,7-tetrahydrothieno (2,3-c) pyridine (Y-3642)].
    Imamura H; Matsui E; Kato Y; Furuta T
    Yakugaku Zasshi; 1971 May; 91(5):546-9. PubMed ID: 4397683
    [No Abstract]   [Full Text] [Related]  

  • 20. Metabolism of a glutathione conjugate of 2-hydroxyoestradiol by rat liver and kidney preparations in vitro.
    Elce JS
    Biochem J; 1970 Mar; 116(5):913-7. PubMed ID: 5441380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.