These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 4387388)

  • 1. The bacterial metabolism of 2,4-xylenol.
    Chapman PJ; Hopper DJ
    Biochem J; 1968 Dec; 110(3):491-8. PubMed ID: 4387388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gentisic acid and its 3- and 4-methyl-substituted homologoues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol.
    Hopper DJ; Chapman PJ
    Biochem J; 1971 Mar; 122(1):19-28. PubMed ID: 4330964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866.
    Chen YF; Chao H; Zhou NY
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1349-56. PubMed ID: 23736872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HipH Catalyzes the Hydroxylation of 4-Hydroxyisophthalate to Protocatechuate in 2,4-Xylenol Catabolism by Pseudomonas putida NCIMB 9866.
    Chao HJ; Chen YF; Fang T; Xu Y; Huang WE; Zhou NY
    Appl Environ Microbiol; 2016 Jan; 82(2):724-31. PubMed ID: 26567311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel 2,3-xylenol-utilizing Pseudomonas isolate capable of degrading multiple phenolic compounds.
    Xiao Z; Huo F; Huang Y; Zhu X; Lu JR
    Bioresour Technol; 2012 Jan; 104():59-64. PubMed ID: 22074902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial metabolism of para- and meta-xylene: oxidation of a methyl substituent.
    Davey JF; Gibson DT
    J Bacteriol; 1974 Sep; 119(3):923-9. PubMed ID: 4850727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aromatic alcohol dehydrogenases in Pseudomonas putida N.C.I.B. 9869 grown on 3,5-xylenol and p-cresol.
    Keat MJ; Hopper DJ
    Biochem J; 1978 Nov; 175(2):659-67. PubMed ID: 743216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol.
    Reiner AM
    J Bacteriol; 1971 Oct; 108(1):89-94. PubMed ID: 4399343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and biochemical characterization of the xlnD-encoded 3-hydroxybenzoate 6-hydroxylase involved in the degradation of 2,5-xylenol via the gentisate pathway in Pseudomonas alcaligenes NCIMB 9867.
    Gao X; Tan CL; Yeo CC; Poh CL
    J Bacteriol; 2005 Nov; 187(22):7696-702. PubMed ID: 16267294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolism of cresols by species of Pseudomonas.
    Bayly RC; Dagley S; Gibson DT
    Biochem J; 1966 Nov; 101(2):293-301. PubMed ID: 5966268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways for the oxidation of aromatic compounds by Azotobacter.
    Hardisson C; Sala-Trepat JM; Stanier RY
    J Gen Microbiol; 1969 Nov; 59(1):1-11. PubMed ID: 4391505
    [No Abstract]   [Full Text] [Related]  

  • 12. [Peripheral metabolism of isomeric xylenes by Pseudomonas aeruginosa].
    Skriabin GK; Ganbarov KhG; Golovleva LA; Chervin II; Adanin VM
    Mikrobiologiia; 1976; 45(6):951-4. PubMed ID: 827670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of dilution rate on NAD(P) and NAD(P)H concentrations and ratios in a Pseudomonas sp. grown in continuous culture.
    Matin A; Gottschal JC
    J Gen Microbiol; 1976 Jun; 94(2):333-41. PubMed ID: 7637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [para-Aminobenzoic acid as a sole source of carbon and energy for Pseudomonas desmoliticum].
    Surovtseva EG; Karasevich IuN
    Mikrobiologiia; 1976 JUL-AUG; 45(4):650-4. PubMed ID: 1086418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-oxidation of NADH and NADPH by a mammalian 15-lipoxygenase: inhibition of lipoxygenase activity at near-physiological NADH concentrations.
    O'donnell VB; Kühn H
    Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):203-8. PubMed ID: 9355754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-cresol and 3,5-xylenol methylhydroxylases in Pseudomonas putida N.C.I.B. 9896.
    Keat MJ; Hopper DJ
    Biochem J; 1978 Nov; 175(2):649-58. PubMed ID: 743215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of different pathways in the metabolism of n-propylbenzene by Pseudomonas sp.
    Jigami Y; Kawasaki Y; Omori T; Minoda Y
    Appl Environ Microbiol; 1979 Nov; 38(5):783-8. PubMed ID: 543699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolism of D-glucarate by Pseudomonas acidovorans.
    Jeffcoat R; Hassall H; Dagley S
    Biochem J; 1969 Dec; 115(5):969-76. PubMed ID: 4311826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive relationship between protocatechuic acid and p-aminosalicylic acid for a cellular transport mechanism.
    HUBBARD JS; DURHAM NN
    J Bacteriol; 1961 Sep; 82(3):361-9. PubMed ID: 13716426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872.
    Griffin M; Trudgill PW
    Biochem J; 1972 Sep; 129(3):595-603. PubMed ID: 4349113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.