These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 4387596)

  • 1. Free-radical mechanism by which triphenyltetrazolium chloride stimulates aerobic oxidation of NADPH by microsomes.
    Sato S; Iwaizumi M
    Biochim Biophys Acta; 1969 Jan; 172(1):30-6. PubMed ID: 4387596
    [No Abstract]   [Full Text] [Related]  

  • 2. Free radicals in NADPH-microsomes-triphenyltetrazolium chloride system as evidenced by initiation of sulfite oxidation.
    Sato S
    Biochim Biophys Acta; 1967; 143(3):554-61. PubMed ID: 4383914
    [No Abstract]   [Full Text] [Related]  

  • 3. Stimulation by triphenyltetrazolium chloride of aerobic oxidation of NADPH2 by tumor microsomes.
    Sato S
    Biochim Biophys Acta; 1966 Aug; 122(2):359-61. PubMed ID: 4381850
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of the free radical formed in aerobic microsomal incubations containing carbon tetrachloride and NADPH.
    Kalyanaraman B; Mason RP; Perez-Reyes E; Chignell CF; Wolf CR; Philpot RM
    Biochem Biophys Res Commun; 1979 Aug; 89(4):1065-72. PubMed ID: 40551
    [No Abstract]   [Full Text] [Related]  

  • 5. Superoxide and hydrogen peroxide production and NADPH oxidation stimulated by nitrofurantoin in lung microsomes: possible implications for toxicity.
    Sasame HA; Boyd MR
    Life Sci; 1979 Mar; 24(12):1091-6. PubMed ID: 36538
    [No Abstract]   [Full Text] [Related]  

  • 6. Photosensitization by the trypanocidal agent crystal violet. Type I versus type II reactions.
    Reszka K; Cruz FS; Docampo R
    Chem Biol Interact; 1986 May; 58(2):161-72. PubMed ID: 3013436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of free radicals during the reductive metabolism of the nitroaromatic compound, nilutamide.
    Berson A; Wolf C; Berger V; Fau D; Chachaty C; Fromenty B; Pessayre D
    J Pharmacol Exp Ther; 1991 May; 257(2):714-9. PubMed ID: 1851835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin trapping of free radicals during hepatic microsomal lipid peroxidation.
    Rosen GM; Rauckman EJ
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7346-9. PubMed ID: 6278469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dietary zinc on endogenous free radical production in rat lung microsomes.
    Bray TM; Kubow S; Bettger WJ
    J Nutr; 1986 Jun; 116(6):1054-60. PubMed ID: 3014092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EPR studies of spin-trapped free radicals in paraquat-treated lung microsomes.
    Zang LY; van Kuijk FJ; Misra HP
    Biochem Mol Biol Int; 1995 Oct; 37(2):255-62. PubMed ID: 8673008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of superoxide and trace transition metals in the production of alpha-hydroxyethyl radical from ethanol by microsomes from alcohol dehydrogenase-deficient deermice.
    Knecht KT; Thurman RG; Mason RP
    Arch Biochem Biophys; 1993 Jun; 303(2):339-48. PubMed ID: 8390220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of 3-methylindole on superoxide and hydrogen peroxide production and NADPH oxidation by goat lung microsomes.
    Laegreid WW; Breeze RG
    Res Commun Chem Pathol Pharmacol; 1985 Mar; 47(3):387-97. PubMed ID: 2986255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrazolium reductase activity of the enzymatic systems of oxidation of reduced nicotinamide nucleotides in mammalian brain.
    Vesco C; Giuditta A
    Biochim Biophys Acta; 1966 Feb; 113(2):197-215. PubMed ID: 4380273
    [No Abstract]   [Full Text] [Related]  

  • 16. Toward stable electron paramagnetic resonance oximetry probes: synthesis, characterization, and metabolic evaluation of new ester derivatives of a tris-(para-carboxyltetrathiaaryl)methyl (TAM) radical.
    Decroos C; Balland V; Boucher JL; Bertho G; Xu-Li Y; Mansuy D
    Chem Res Toxicol; 2013 Oct; 26(10):1561-9. PubMed ID: 24010758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of radicals formed in the reaction mixtures of rat liver microsomes with ADP, Fe3+ and NADPH using HPLC EPR and HPLC EPR MS.
    Minakata K; Okuno E; Nakamura M; Iwahashi H
    J Biochem; 2007 Jul; 142(1):73-8. PubMed ID: 17646184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-trapping of the trichloromethyl radical produced during enzymic NADPH oxidation in the presence of carbon tetrachloride or bromotrichloromethane.
    Poyer JL; Floyd RA; McCay PB; Janzen EG; Davis ER
    Biochim Biophys Acta; 1978 Mar; 539(3):402-9. PubMed ID: 24480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH-dependent melanin pigment formation from 5-hydroxy-indolealkylamines by hepatic and cerebral microsomes.
    Uemura T; Shimazu T; Miura R; Yamano T
    Biochem Biophys Res Commun; 1980 Apr; 93(4):1074-81. PubMed ID: 6249277
    [No Abstract]   [Full Text] [Related]  

  • 20. [Adrenaline oxidation by tumor nuclear membranes mediated by superoxide radicals].
    Peskin AV; Tarakhovskiĭ AM; Shliakhovenko VA; Zbarskiĭ IB
    Dokl Akad Nauk SSSR; 1982; 263(5):1270-3. PubMed ID: 6284469
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.