These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 438765)

  • 1. Heterogeneity in dog red blood cells: sodium and potassium transport.
    Castranova V; Hoffman JF
    J Gen Physiol; 1979 Jan; 73(1):61-71. PubMed ID: 438765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneity among dog red blood cells.
    Parker JC
    J Gen Physiol; 1981 Aug; 78(2):141-50. PubMed ID: 7276906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between temperature and tonicity on cation transport in dog red cells.
    Elford BC
    J Physiol; 1975 Mar; 246(2):371-95. PubMed ID: 806680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular inhomogeneity in dog red cells as revealed by sodium flux.
    Lange Y; Lange RV; Solomon AK
    J Gen Physiol; 1970 Oct; 56(4):438-61. PubMed ID: 5507091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active sodium and potassium transport in high potassium and low potassium sheep red cells.
    Hoffman PG; Tosteson DC
    J Gen Physiol; 1971 Oct; 58(4):438-66. PubMed ID: 5112660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation transport in dog red cells.
    Romualdez A; Sha'afi RI; Lange Y; Solomon AK
    J Gen Physiol; 1972 Jul; 60(1):46-57. PubMed ID: 5042023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.
    Kimzey SL; Willis JS
    J Gen Physiol; 1971 Dec; 58(6):634-49. PubMed ID: 5120391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation movements in the high sodium erythrocyte of the cat.
    Sha'afi RI; Lieb WR
    J Gen Physiol; 1967 Jul; 50(6):1751-64. PubMed ID: 6034766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of cation permeability of dog red cells.
    Elford BC; Solomon AK
    Nature; 1974 Apr; 248(448):522-4. PubMed ID: 4824349
    [No Abstract]   [Full Text] [Related]  

  • 11. Several cation transporters and volume regulation in high-K dog red blood cells.
    Fujise H; Yamada I; Masuda M; Miyazawa Y; Ogawa E; Takahashi R
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C589-97. PubMed ID: 1848403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive potassium transport in LK sheep red cells. Effects of anti-L antibody and intracellular potassium.
    Dunham PB
    J Gen Physiol; 1976 Dec; 68(6):567-81. PubMed ID: 1033265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actions of thiocyanate and N-phenylmaleimide on volume-responsive Na and K transport in dog red cells.
    Parker JC; Colclasure GC
    Am J Physiol; 1992 Feb; 262(2 Pt 1):C418-21. PubMed ID: 1311502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation specificity of propranolol-induced changes in RBC membrane permeability: comparative effects in human, dog and cat erythrocytes.
    Müller-Soyano A; Glader BE
    J Cell Physiol; 1977 May; 91(2):317-21. PubMed ID: 558987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium movement in high sodium feline red cells.
    Sha'afi RI; Hajjar JJ
    J Gen Physiol; 1971 Jun; 57(6):684-96. PubMed ID: 5576766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional separation of the Na-K exchange pump from the volume controlling mechanism in enlarged duck red cells.
    Kregenow FM
    J Gen Physiol; 1974 Oct; 64(4):393-412. PubMed ID: 4424713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dog red blood cells: Na and K diffusion potentials with extracellular ATP.
    Parker JC; Castranova V; Goldfinger JM
    J Gen Physiol; 1977 Apr; 69(4):417-30. PubMed ID: 853285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier-mediated residual K+ and Na+ transport of human red blood cells.
    Denner K; Heinrich R; Bernhardt I
    J Membr Biol; 1993 Mar; 132(2):137-45. PubMed ID: 8496945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.