BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 4389191)

  • 1. Oxidative enzyme components of avian liver microsomes. Changes during embryonic development and the effects of phenobarbital administration.
    Strittmatter CF; Umberger FT
    Biochim Biophys Acta; 1969 May; 180(1):18-27. PubMed ID: 4389191
    [No Abstract]   [Full Text] [Related]  

  • 2. [Hydroxylase activity and hemoprotein content of microsomes from rabbit liver].
    Lange G
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1968; 259(3):221-38. PubMed ID: 4385653
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies on the mechanism of action of mammalian hepatic azoreductase. II. The effects of phenobarbital and 3-methylcholanthrene on carbon monoxide sensitive and insensitive azoreductase activities.
    Hernandez PH; Mazel P; Gillette JR
    Biochem Pharmacol; 1967 Oct; 16(10):1877-88. PubMed ID: 4383668
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects ofrypsin on the electron transport systems of liver microsomes.
    Orrenius S; Berg A; Ernster L
    Eur J Biochem; 1969 Nov; 11(1):193-200. PubMed ID: 4390927
    [No Abstract]   [Full Text] [Related]  

  • 5. Microsomal electron transport. I. Reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase and cytochrome P-450 as electron carriers in microsomal NADPH-peroxidase activity.
    Hrycay EG; O'Brien PJ
    Arch Biochem Biophys; 1973 Jul; 157(1):7-22. PubMed ID: 4146146
    [No Abstract]   [Full Text] [Related]  

  • 6. CO-binding pigment (P-450) and other electron transport components in hepatoma bearing rats.
    Brown HD; Morris HP; Chattopadhyay SK; Patel AB; Pennington SN
    Experientia; 1969 Apr; 25(4):358-9. PubMed ID: 4389706
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of phenobarbital and naphthalene on some of the components of the electron transport system and the hydroxylating activity of house fly microsomes.
    Capdevila J; Morello A; Perry AS; Agosin M
    Biochemistry; 1973 Mar; 12(7):1445-51. PubMed ID: 4696758
    [No Abstract]   [Full Text] [Related]  

  • 8. Resolution of the cytochrome P-450-containing omega-hydroxylation system of liver microsomes into three components.
    Lu AY; Junk KW; Coon MJ
    J Biol Chem; 1969 Jul; 244(13):3714-21. PubMed ID: 4389465
    [No Abstract]   [Full Text] [Related]  

  • 9. Fatty acid inducible cy tochrome P-454 of rat kidney cortex microsomes.
    Jakobsson S; Thor H; Orrenius S
    Biochem Biophys Res Commun; 1970; 39(6):1073-80. PubMed ID: 4397847
    [No Abstract]   [Full Text] [Related]  

  • 10. The turnover of microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase in the livers of mice treated with phenobarbital.
    Jick H; Shuster L
    J Biol Chem; 1966 Nov; 241(22):5366-9. PubMed ID: 4380944
    [No Abstract]   [Full Text] [Related]  

  • 11. Histochemical demonstration of enzymes related to NADPH-dependent hydroxylating systems in rat liver after phenobarbital treatment.
    Koudstaal J; Hardonk MJ
    Histochemie; 1969; 20(1):68-77. PubMed ID: 4391104
    [No Abstract]   [Full Text] [Related]  

  • 12. Substrate interaction with hydroxylase system in liver microsomes.
    Imai Y; Sato R
    Biochem Biophys Res Commun; 1966 Mar; 22(6):620-6. PubMed ID: 4380276
    [No Abstract]   [Full Text] [Related]  

  • 13. Preparation and properties of a solubilized form of cytochrome P-450 from chick embryo liver microsomes.
    Mitani F; Alvares AP; Sassa S; Kappas A
    Mol Pharmacol; 1971 May; 7(3):280-92. PubMed ID: 4398361
    [No Abstract]   [Full Text] [Related]  

  • 14. [Changes in the activity o some microsomal liver enzymes following phalloidin poisoning in rats].
    Degkwitz E; Köhler FR; Staudinger H
    Hoppe Seylers Z Physiol Chem; 1969 Aug; 350(8):1023-6. PubMed ID: 4308905
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of phenobarbital on electron transport system, oxidation and reduction of drugs in liver microsomes of rats of different age.
    Kato R; Takanaka A
    J Biochem; 1968 Mar; 63(3):406-8. PubMed ID: 4299573
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of thyroidectomy and triiodothyronine administration on oxidative enzymes in rat liver microsomes.
    Suzuki M; Imai K; Ito A; Omura T; Sato R
    J Biochem; 1967 Oct; 62(4):447-55. PubMed ID: 4385124
    [No Abstract]   [Full Text] [Related]  

  • 17. Changes in Michaelis and spectral constants for aniline in hepatic microsomes from phenobarbital-treated rats.
    Guarino AM; Gram TE; Gigon PL; Greene FE; Gillette JR
    Mol Pharmacol; 1969 Mar; 5(2):131-6. PubMed ID: 5787083
    [No Abstract]   [Full Text] [Related]  

  • 18. Phenobarbital-induced synthesis of the oxidative demethylating enzymes of rat liver microsomes.
    Orrenius S; Ernster L
    Biochem Biophys Res Commun; 1964 May; 16(1):60-5. PubMed ID: 4288784
    [No Abstract]   [Full Text] [Related]  

  • 19. Properties of a submicrosomal particle containing P-450 and flavoprotein.
    Miyake Y; Gaylor JL; Mason HS
    J Biol Chem; 1968 Nov; 243(21):5788-97. PubMed ID: 4387008
    [No Abstract]   [Full Text] [Related]  

  • 20. Electron-transfer mechanism associated with fatty acid desaturation catalyzed by liver microsomes.
    Oshino N; Imai Y; Sato R
    Biochim Biophys Acta; 1966 Oct; 128(1):13-27. PubMed ID: 4382040
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.