These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 4389403)

  • 41. Genetic Characterization of Soybean Rhizobia Isolated from Different Ecological Zones in North-Eastern Afghanistan.
    Habibi S; Ayubi AG; Ohkama-Ohtsu N; Sekimoto H; Yokoyama T
    Microbes Environ; 2017 Mar; 32(1):71-79. PubMed ID: 28321006
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens.
    Akiyama H; Hoshino YT; Itakura M; Shimomura Y; Wang Y; Yamamoto A; Tago K; Nakajima Y; Minamisawa K; Hayatsu M
    Sci Rep; 2016 Sep; 6():32869. PubMed ID: 27633524
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis.
    Sugiyama A; Shitan N; Yazaki K
    Plant Physiol; 2007 Aug; 144(4):2000-8. PubMed ID: 17556512
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A dual-targeted soybean protein is involved in Bradyrhizobium japonicum infection of soybean root hair and cortical cells.
    Libault M; Govindarajulu M; Berg RH; Ong YT; Puricelli K; Taylor CG; Xu D; Stacey G
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1051-60. PubMed ID: 21815830
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties.
    Zhao L; Xu Y; Lai X
    Braz J Microbiol; 2018; 49(2):269-278. PubMed ID: 29117917
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus.
    Kumagai H; Hakoyama T; Umehara Y; Sato S; Kaneko T; Tabata S; Kouchi H
    Plant Physiol; 2007 Mar; 143(3):1293-305. PubMed ID: 17277093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Evaluation of the Diversity of Nitrogen-Fixing Bacteria in Soybean Rhizosphere by nifH Gene Analysis ].
    Kizilova AK; Titova LV; Kravchenko IK; Iutinskaia GA
    Mikrobiologiia; 2012; 81(5):672-81. PubMed ID: 23234079
    [No Abstract]   [Full Text] [Related]  

  • 48. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study.
    Vauclare P; Bligny R; Gout E; Widmer F
    FEMS Microbiol Lett; 2013 Jun; 343(1):49-56. PubMed ID: 23480054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of active VQ motif-containing genes and the expression patterns under low nitrogen treatment in soybean.
    Wang X; Zhang H; Sun G; Jin Y; Qiu L
    Gene; 2014 Jun; 543(2):237-43. PubMed ID: 24727126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Proteomic Network for Symbiotic Nitrogen Fixation Efficiency in Bradyrhizobium elkanii.
    Cooper B; Campbell KB; Beard HS; Garrett WM; Mowery J; Bauchan GR; Elia P
    Mol Plant Microbe Interact; 2018 Mar; 31(3):334-343. PubMed ID: 29117782
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Host sanctions and the legume-rhizobium mutualism.
    Kiers ET; Rousseau RA; West SA; Denison RF
    Nature; 2003 Sep; 425(6953):78-81. PubMed ID: 12955144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Effect of phytoregulator reglag on symbiotic properties of Bradyrhizobium japonicum 634b].
    Kyrychenko OV; Tytova LV; Zhemoĭda AV; Komisarenko AH; Daskaliuk TM
    Mikrobiol Z; 2008; 70(1):17-24. PubMed ID: 18416150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of biosolids compost on the bradyrhizobial genotypes recovered from cowpea and soybean nodules.
    Cousin C; Grant J; Dixon F; Beyene D; van Berkum P
    Arch Microbiol; 2002 May; 177(5):427-30. PubMed ID: 11976752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Effects of low molecular organic acids on nitrogen accumulation, nodulation, and nitrogen fixation of soybean (Glycine max L.) under phosphorus deficiency stress].
    Wang SQ; Han XZ; Qiao YF; Yan J; Li XH
    Ying Yong Sheng Tai Xue Bao; 2009 May; 20(5):1079-84. PubMed ID: 19803163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.
    Goh CH; Nicotra AB; Mathesius U
    Plant Cell Environ; 2016 Apr; 39(4):883-96. PubMed ID: 26523414
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of drought stress on legume symbiotic nitrogen fixation: physiological mechanisms.
    Serraj R
    Indian J Exp Biol; 2003 Oct; 41(10):1136-41. PubMed ID: 15242280
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The biology and chemistry of nitrogen fixation by legume bacteria.
    VIRTANEN AI
    Biol Rev Camb Philos Soc; 1947 Jul; 22(3):239-69. PubMed ID: 20253194
    [No Abstract]   [Full Text] [Related]  

  • 58. Nitrogen fixation by gram-negative bacteria.
    PROCTOR MH; WILSON PW
    Nature; 1958 Sep; 182(4639):891. PubMed ID: 13590163
    [No Abstract]   [Full Text] [Related]  

  • 59. NITROGEN FIXATION BY PHOTOSYNTHETIC BACTERIA.
    Lindstrom ES; Burris RH; Wilson PW
    J Bacteriol; 1949 Sep; 58(3):313-6. PubMed ID: 16561788
    [No Abstract]   [Full Text] [Related]  

  • 60. Colonization of soybean buds by bacteria: observations with the scanning electron microscope.
    Leben C
    Can J Microbiol; 1969 Mar; 15(3):319-20. PubMed ID: 5813839
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.