These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 4389578)

  • 21. Metabolic properties of erythrocytes of normal and genetically anemic mice.
    Hutton JJ; Bernstein SE
    Biochem Genet; 1973 Nov; 10(3):297-307. PubMed ID: 4148156
    [No Abstract]   [Full Text] [Related]  

  • 22. Studies on erythrocyte glycolysis. VI. Control of glycolysis by ATP level in human erythrocytes.
    Saito T; Minakami S
    J Biochem; 1967 Feb; 61(2):211-9. PubMed ID: 6058200
    [No Abstract]   [Full Text] [Related]  

  • 23. Studies on erythrocyte glycolysis. VII. Changes of glycolytic intermediates in erythrocytes during storage in acid-citrate-dextrose medium.
    Oyama H; Minakami S; Yoshikawa H
    J Biochem; 1968 Feb; 63(2):254-60. PubMed ID: 4299378
    [No Abstract]   [Full Text] [Related]  

  • 24. CHROMATE INDUCED INHIBITION OF GLUTATHIONE REDUCTASE (GSSG-R) IN THE HUMAN ERYTHROCYTE.
    VALENTINE WN; KOUTRAS GA; SCHNEIDER AS; HATTORI M; EBAUGH FG
    Trans Assoc Am Physicians; 1964; 77():88-99. PubMed ID: 14275440
    [No Abstract]   [Full Text] [Related]  

  • 25. Intraerythrocytic adaptation to anemia.
    Torrance J; Jacobs P; Restrepo A; Eschbach J; Lenfant C; Finch CA
    N Engl J Med; 1970 Jul; 283(4):165-9. PubMed ID: 5424006
    [No Abstract]   [Full Text] [Related]  

  • 26. [Significance and regulation of the pentosephosphate pathway in human erythrocytes. II. Experiments with glucose-6-phosphate dehydrogenase-deficient erythrocytes].
    Brand K; Arese P; Rivera M
    Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):509-14. PubMed ID: 4392679
    [No Abstract]   [Full Text] [Related]  

  • 27. The balance of pyridine nucleotides and ATP in adipose tissue.
    Rognstad R; Katz J
    Proc Natl Acad Sci U S A; 1966 May; 55(5):1148-56. PubMed ID: 4381021
    [No Abstract]   [Full Text] [Related]  

  • 28. Mechanism of senescence of red blood cells.
    Tannert C; Schmidt G; Klatt D; Rapoport SM
    Acta Biol Med Ger; 1977; 36(5-6):831-6. PubMed ID: 23638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative erythrocyte metabolism.
    Kaneko JJ
    Adv Vet Sci Comp Med; 1974; 18(0):117-53. PubMed ID: 4153603
    [No Abstract]   [Full Text] [Related]  

  • 30. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway.
    Travis SF; Morrison AD; Clements RS; Winegrad AI; Oski FA
    J Clin Invest; 1971 Oct; 50(10):2104-12. PubMed ID: 4398937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes.
    Rapoport TA; Heinrich R; Rapoport SM
    Biochem J; 1976 Feb; 154(2):449-69. PubMed ID: 132930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic studies on the inhibition of glycolytic kinases of human erythrocytes by 2,3-diphosphoglyceric acid.
    Ponce J; Roth S; Harkness DR
    Biochim Biophys Acta; 1971 Oct; 250(1):63-74. PubMed ID: 4258865
    [No Abstract]   [Full Text] [Related]  

  • 33. Pyridine nucleotide metabolism: purine and pyrimidine interconnections.
    Micheli V; Ricci C; Sestini S; Rocchigiani M; Pescaglini M; Pompucci G
    Adv Exp Med Biol; 1991; 309B():323-8. PubMed ID: 1723570
    [No Abstract]   [Full Text] [Related]  

  • 34. Emissive Synthetic Cofactors: Enzymatic Interconversions of
    Hallé F; Fin A; Rovira AR; Tor Y
    Angew Chem Int Ed Engl; 2018 Jan; 57(4):1087-1090. PubMed ID: 29228460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A futile cycle in erythrocyte glycolysis.
    Black JA; Acott KM; Bufton L
    Biochim Biophys Acta; 1985 Nov; 810(2):246-51. PubMed ID: 4063353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative carbohydrate catabolism and methemoglobin reduction in pig and human erythrocytes.
    Rivkin SE; Simon ER
    J Cell Physiol; 1965 Aug; 66(1):49-56. PubMed ID: 4379217
    [No Abstract]   [Full Text] [Related]  

  • 37. Formation of extracellular adenosine triphosphate by human erythrocytes.
    Ronquist G
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):477-82. PubMed ID: 4176847
    [No Abstract]   [Full Text] [Related]  

  • 38. [Significance and regulation of the pentosephosphate pathway in human erythrocytes. I. Experiments with normal erythrocytes].
    Brand K; Arese P; Rivera M
    Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):501-8. PubMed ID: 4392678
    [No Abstract]   [Full Text] [Related]  

  • 39. Adenine nucleotide status, phosphoglycerate reduction and photosynthetic phosphorylation in a reconstituted chloroplast system.
    Carver KA; Hope AB; Walker DA
    Biochem J; 1983 Jan; 210(1):273-6. PubMed ID: 6847646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [VII. Activities of transfer RNA, aminoacyl--transfer RNA synthetases and ribosomes from various organ tissues and tumors].
    Heller G; Neth R
    Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):489-500. PubMed ID: 4393720
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.