These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4389988)

  • 21. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase.
    Sugiyama T; Miura R; Yamano T
    J Biochem; 1979 Jul; 86(1):213-23. PubMed ID: 39065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beef adrenal medulla dihydropteridine reductase.
    Musacchio JM
    Biochim Biophys Acta; 1969 Nov; 191(2):485-7. PubMed ID: 5354274
    [No Abstract]   [Full Text] [Related]  

  • 23. MITOCHONDRIAL OXIDASE ACTIVITIES AND PYRIDINE NUCLEOTIDE CONCENTRATIONS OF NORMAL HUMAN LIVER.
    HENLEY KS; NAPIER EA; KREYDEN RW; CORSSEN GC; BERENDSOHN S
    J Lab Clin Med; 1964 Aug; 64():306-12. PubMed ID: 14202792
    [No Abstract]   [Full Text] [Related]  

  • 24. Production of antibodies to sheep liver dihydropteridine reductase: characterization and use to study the enzyme defect in a variant form of phenylketonuria.
    Milstien S; Kaufman S
    Biochem Biophys Res Commun; 1975 Sep; 66(2):475-81. PubMed ID: 810143
    [No Abstract]   [Full Text] [Related]  

  • 25. On the mechanism of malonyl-CoA-independent fatty acid synthesis. I. The mechanism of elongation of long-chain fatty acids by acetyl-CoA.
    Seubert W; Lamberts I; Kramer R; Ohly B
    Biochim Biophys Acta; 1968 Dec; 164(3):498-517. PubMed ID: 4387390
    [No Abstract]   [Full Text] [Related]  

  • 26. Bovine liver glutamate dehydrogenase. Equilibria and kinetics of imine formation by lysine-97 with pyridoxal 5'-phosphate.
    Piszkiewicz D; Smith EL
    Biochemistry; 1971 Nov; 10(24):4544-52. PubMed ID: 4401129
    [No Abstract]   [Full Text] [Related]  

  • 27. Studies of glutamate dehydrogenase. The binding of NADH and NADPH to beef-liver glutamate dehydrogenase.
    Krause J; Bühner M; Sund H
    Eur J Biochem; 1974 Feb; 41(3):593-602. PubMed ID: 4150365
    [No Abstract]   [Full Text] [Related]  

  • 28. Metabolism of the ketoaldehyde 2-keto-3-deoxyglucose.
    Jellum E
    Biochim Biophys Acta; 1968 Oct; 165(3):357-63. PubMed ID: 4391087
    [No Abstract]   [Full Text] [Related]  

  • 29. Coenzyme specificity of mammalian liver D-glycerate dehydrogenase.
    Van Schaftingen E; Draye JP; Van Hoof F
    Eur J Biochem; 1989 Dec; 186(1-2):355-9. PubMed ID: 2689175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Absence of NADH:NAD+ oxidoreductase activity in mitochondrial NAD(P) transhydrogenase.
    Kramar R; Müller M; Salvenmoser F
    Biochim Biophys Acta; 1968 Aug; 162(2):289-91. PubMed ID: 4386668
    [No Abstract]   [Full Text] [Related]  

  • 31. Bovine liver glutamate dehydrogenase. Equilibria and kinetics of inactivation by pyridoxal.
    Piszkiewicz D; Smith EL
    Biochemistry; 1971 Nov; 10(24):4538-44. PubMed ID: 4401128
    [No Abstract]   [Full Text] [Related]  

  • 32. Isolation and characterization of dihydropteridine reductase from human liver.
    Firgaira FA; Cotton RG; Danks DM
    Biochem J; 1981 Jul; 197(1):31-43. PubMed ID: 7317032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple procedure for purification of NADH-specific dihydropteridine reductase from mammalian liver.
    Nakanisi N; Hirayama K; Yamada S
    J Biochem; 1982 Oct; 92(4):1033-40. PubMed ID: 7174633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. THE ACTIVITY OF LIVER ALCOHOL DEHYDROGENASE WITH NICOTINAMIDE-ADENINE DINUCLEOTIDE PHOSPHATE AS COENZYME.
    DALZIEL K; DICKINSON FM
    Biochem J; 1965 May; 95(2):311-20. PubMed ID: 14340079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Kinetic studies of conformational changes of L-glutamate dehydrogenase induced by the GTP + NADH binding effector].
    Jallon JM; di Franco A; Iwatsubo M
    Eur J Biochem; 1970 Apr; 13(3):428-37. PubMed ID: 4393614
    [No Abstract]   [Full Text] [Related]  

  • 36. Preferential utilization of NADPH as the endogenous electron donor for NAD(P)H:quinone oxidoreductase 1 (NQO1) in intact pulmonary arterial endothelial cells.
    Bongard RD; Lindemer BJ; Krenz GS; Merker MP
    Free Radic Biol Med; 2009 Jan; 46(1):25-32. PubMed ID: 18848878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The NADH/NADPH-methemoglobin reduction system or erythrocytes.
    Hultquist DE; Sannes LJ; Schafer DA
    Prog Clin Biol Res; 1981; 55():291-309. PubMed ID: 7027268
    [No Abstract]   [Full Text] [Related]  

  • 38. One-electron-transfer reactions in biochemical systems. V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase).
    Iyanagi T; Yamazaki I
    Biochim Biophys Acta; 1970 Sep; 216(2):282-94. PubMed ID: 4396182
    [No Abstract]   [Full Text] [Related]  

  • 39. Dihydropteridine reductase: implication on the regulation of catecholamine biosynthesis.
    Musacchio JM; D'Angelo GL; McQueen CA
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2087-91. PubMed ID: 5289368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [THE ENZYMATIC REGULATION AT THE LACTATE OXIDOREDUCTASE LEVEL. NADH AND NADPH OXIDASES AS WELL AS NADP REACTIVE LACTATE OXIDOREDUCTASE IN RED BLOOD CELLS].
    RAPOPORT S; ABABEI L
    Acta Biol Med Ger; 1964; 13():852-64. PubMed ID: 14335764
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.