These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 439012)

  • 21. Heterogeneous responses to vasodilators of dog proximal and distal middle cerebral arteries.
    Toda N; Miyazaki M
    J Cardiovasc Pharmacol; 1984; 6(6):1230-7. PubMed ID: 6084784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscarinic (M) receptors in coronary circulation: gene-targeted mice define the role of M2 and M3 receptors in response to acetylcholine.
    Lamping KG; Wess J; Cui Y; Nuno DW; Faraci FM
    Arterioscler Thromb Vasc Biol; 2004 Jul; 24(7):1253-8. PubMed ID: 15130910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular smooth muscle [Ca2+] in acetylcholine and nitric oxide-mediated relaxation of human small arteries.
    Buus NH; Simonsen U; Pilegaard HK; Mulvany MJ
    Eur J Pharmacol; 2006 Mar; 535(1-3):243-7. PubMed ID: 16522319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of hypoxia and acetylcholine in the regulation of cerebral blood flow.
    Dora E; Kovach AG
    Adv Exp Med Biol; 1987; 215():237-48. PubMed ID: 3673722
    [No Abstract]   [Full Text] [Related]  

  • 25. Evidence that vasoactive intestinal polypeptide is a dilator transmitter to some cerebral and extracerebral cranial arteries.
    Bevan JA; Moscowitz M; Said SI; Buga G
    Peptides; 1984; 5(2):385-8. PubMed ID: 6473162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between drug-induced changes in blood pressure and cerebral oxygen availability.
    Aquilonius SM; Sundwall A; Winbladh B
    Acta Physiol Scand; 1968; 73(1):220-5. PubMed ID: 5672448
    [No Abstract]   [Full Text] [Related]  

  • 27. Norepinephrine and acetylcholine transmitter mechanisms in large cerebral arteries of the pig.
    Lee TJ; Kinkead LR; Sarwinski S
    J Cereb Blood Flow Metab; 1982 Dec; 2(4):439-50. PubMed ID: 7142308
    [No Abstract]   [Full Text] [Related]  

  • 28. Influence of cholinergic receptors on cerebral blood flow of the goat.
    Alborch E; Martin G; Baguena J
    Acta Neurol Scand Suppl; 1977; 64():298-9. PubMed ID: 268813
    [No Abstract]   [Full Text] [Related]  

  • 29. High dose naloxone produces cerebral vasodilation.
    Turner DM; Kassell NF; Sasaki T; Comair YG; Beck DO; Boarini DJ
    Neurosurgery; 1984 Aug; 15(2):192-7. PubMed ID: 6483137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of DQ2511-induced relaxation in isolated dog, monkey and human arteries.
    Okamura T; Ide S; Toda N
    Pharmacology; 1995 Jun; 50(6):370-9. PubMed ID: 7568336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential block by 1-hyoscyamine of the salivary and vascular responses of the dog mandibular gland to prostaglandin F2alpha.
    Taira N; Narimatsu A; Satoh S
    Life Sci; 1975 Dec; 17(12):1869-75. PubMed ID: 1219301
    [No Abstract]   [Full Text] [Related]  

  • 32. Distribution of choline acetyltransferase in cerebral and extracerebral cranial arteries of the cat. Its relationship to neurogenic atropine-sensitive dilation.
    Bevan JA; Buga GM; Florence VM; Gonsalves A; Snowden A
    Circ Res; 1982 Apr; 50(4):470-6. PubMed ID: 7067056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vasopressin action on the cephalic vasculature. Angiographic study in the dog.
    Aronsen KF; Nylander G
    Acta Radiol Diagn (Stockh); 1966 Jul; 4(4):353-64. PubMed ID: 5944409
    [No Abstract]   [Full Text] [Related]  

  • 34. Influence of intracarotid infusions of hexamethonium on acetylcholine release from perfused cerebral ventricles in anaesthetized dogs.
    Rao KS; Bhatt HV; Gopalakrishna G; Haranath PS
    Indian J Med Res; 1970 Sep; 58(9):1279-84. PubMed ID: 5505213
    [No Abstract]   [Full Text] [Related]  

  • 35. Acetylcholine to measure total vascular pressure-volume relationship.
    Rothe CF
    Am J Physiol; 1988 Sep; 255(3 Pt 2):H690-1. PubMed ID: 2901235
    [No Abstract]   [Full Text] [Related]  

  • 36. On the mechanism of the amphetamine induced vasodilation at the rat's cerebral cortex.
    Rovere AA; Raynald AC; Scremin OU
    Experientia; 1977 Nov; 33(11):1461-3. PubMed ID: 923708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Possible 5-hydroxytryptamine component in the effect of apomorphine in isolated cerebral and peripheral arteries.
    Oudart N; Boulu RG
    Experientia; 1981 Oct; 37(10):1096-7. PubMed ID: 7308403
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of prostaglandins on cerebral blood flow.
    Yamamoto YL; Feindel W; Wolfe LS; Katoh H; Hodge CP
    Eur Neurol; 1971-1972; 6(1):144-52. PubMed ID: 5153417
    [No Abstract]   [Full Text] [Related]  

  • 39. Carbon dioxide and cerebral circulatory control. II. The intravascular effect.
    Shalit MN; Reinmuth OM; Shimojyo S; Scheinberg P
    Arch Neurol; 1967 Oct; 17(4):337-41. PubMed ID: 6047789
    [No Abstract]   [Full Text] [Related]  

  • 40. Thrombin-induced vasoconstriction in isolated cerebral arteries and the influence of a synthetic thrombin inhibitor.
    Nakamura K; Hatano Y; Mori K
    Thromb Res; 1985 Dec; 40(5):715-20. PubMed ID: 4089836
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.