These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4390502)

  • 1. Identification of reduced nicotinamide adenine dinucleotide phosphate-dependent aldehyde reductase in a Rhodotorula strain.
    Watson JA; Hayashi JA; Schuytema E; Doughty CC
    J Bacteriol; 1969 Oct; 100(1):110-6. PubMed ID: 4390502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human liver aldehyde reductase: pH dependence of steady-state kinetic parameters.
    Bhatnagar A; Das B; Liu SQ; Srivastava SK
    Arch Biochem Biophys; 1991 Jun; 287(2):329-36. PubMed ID: 1654814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aldehyde reductase from Rhodotorula.
    Sheys GH; Hayashi JA; Doughty CC
    Methods Enzymol; 1975; 41():361-4. PubMed ID: 236459
    [No Abstract]   [Full Text] [Related]  

  • 4. Properties of the nicotinamide adenine dinucleotide phosphate-dependent aldehyde reductase from pig kidney. Amino acid composition, reactivity of cysteinyl residues, and stereochemistry of D-glyceraldehyde reduction.
    Flynn TG; Shires J; Walton DJ
    J Biol Chem; 1975 Apr; 250(8):2933-40. PubMed ID: 235531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reaction mechanism of aldose reductase from Rhodotorula.
    Sheys GH; Doughty CC
    Biochim Biophys Acta; 1971 Sep; 242(3):523-31. PubMed ID: 4400820
    [No Abstract]   [Full Text] [Related]  

  • 6. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of ferredoxin-nicotinamide adenine dinucleotide phosphate reductase from a nitrogen-fixing bacterium.
    Yoch DC
    J Bacteriol; 1973 Oct; 116(1):384-91. PubMed ID: 4147648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aldose reductase from Rhodotorula. I. Purification and properties.
    Sheys GH; Arnold WJ; Watson JA; Hayashi JA; Doughty CC
    J Biol Chem; 1971 Jun; 246(12):3824-7. PubMed ID: 4397824
    [No Abstract]   [Full Text] [Related]  

  • 9. The characterization of two reduced nicotinamide-adenine dinucleotide phosphate-linked aldehyde reductases from pig brain.
    Turner AJ; Tipton KF
    Biochem J; 1972 Dec; 130(3):765-72. PubMed ID: 4146452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereochemistry of reduction of D-glyceraldehyde catalyzed by a nicotinamide adenine dinucleotide phosphate dependent dehydrogenase from skeletal muscle.
    Walton DJ
    Biochemistry; 1973 Aug; 12(18):3472-8. PubMed ID: 4147215
    [No Abstract]   [Full Text] [Related]  

  • 11. ENZYMATIC BASIS FOR D-ARBITOL PRODUCTION BY SACCHAROMYCES ROUXII.
    INGRAM JM; WOOD WA
    J Bacteriol; 1965 May; 89(5):1186-94. PubMed ID: 14292984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low apparent aldose reductase activity produced by monosaccharide autoxidation.
    Wolff SP; Crabbe MJ
    Biochem J; 1985 Mar; 226(3):625-30. PubMed ID: 2985042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the metabolism of glycerol by skeletal muscle and the presence of a muscle nicotinamide-adenine dinucleotide phosphate-dependent glycerol dehydrogenase.
    Toews CJ
    Biochem J; 1966 Mar; 98(3):27C-29C. PubMed ID: 4380373
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural.
    Jordan DB; Braker JD; Bowman MJ; Vermillion KE; Moon J; Liu ZL
    Biochim Biophys Acta; 2011 Dec; 1814(12):1686-94. PubMed ID: 21890004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and nuclear magnetic resonance study of the interaction of NADP+ and NADPH with chicken liver fatty acid synthase.
    Leanz GF; Hammes GG
    Biochemistry; 1986 Sep; 25(19):5617-24. PubMed ID: 3535882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial purification and characterization of a reduced nicotinamide adenine dinucleotide phosphate-linked aldehyde reductase from heart.
    Smolen A; Anderson AD
    Biochem Pharmacol; 1976 Feb; 25(3):317-23. PubMed ID: 5092
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxidation and reduction of D-xylose by cell-free extract of Pichia quercuum.
    Suzuki T; Onishi H
    Appl Microbiol; 1973 May; 25(5):850-2. PubMed ID: 4146025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional arginine residue in NADPH-dependent aldehyde reductase from pig kidney.
    Davidson WS; Flynn TG
    J Biol Chem; 1979 May; 254(10):3724-9. PubMed ID: 35531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro assembly of Neurospora assimilatory nitrate reductase from protein subunits of a Neurospora mutant and the xanthine oxidizing or aldehyde oxidase systems of higher animals.
    Ketchum PA; Cambier HY; Frazier WA; Madansky CH; Nason A
    Proc Natl Acad Sci U S A; 1970 Jul; 66(3):1016-23. PubMed ID: 4393266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-linked succinic semialdehyde dehydrogenases in a Pseudonomas species.
    Padmanabhan R; Tchen TT
    J Bacteriol; 1969 Oct; 100(1):398-402. PubMed ID: 4390503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.