These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Control of erythritol dehydrogenase in Schizophyllum commune. Isenberg P; Niederpruem DJ Arch Mikrobiol; 1967 Feb; 56(1):22-30. PubMed ID: 4297892 [No Abstract] [Full Text] [Related]
5. Identification, characterization of two NADPH-dependent erythrose reductases in the yeast Yarrowia lipolytica and improvement of erythritol productivity using metabolic engineering. Cheng H; Wang S; Bilal M; Ge X; Zhang C; Fickers P; Cheng H Microb Cell Fact; 2018 Aug; 17(1):133. PubMed ID: 30157840 [TBL] [Abstract][Full Text] [Related]
6. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella. Barbier T; Collard F; Zúñiga-Ripa A; Moriyón I; Godard T; Becker J; Wittmann C; Van Schaftingen E; Letesson JJ Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17815-20. PubMed ID: 25453104 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of growth by erythritol catabolism in Brucella abortus. Sperry JF; Robertson DC J Bacteriol; 1975 Oct; 124(1):391-7. PubMed ID: 170249 [TBL] [Abstract][Full Text] [Related]
8. Regulation of glutamate dehydrogenases during morphogenesis of Schizophyllum commune. Dennen DW; Niederpruem DJ J Bacteriol; 1967 Mar; 93(3):904-13. PubMed ID: 4381636 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of erythritol production by Trichosporonoides oedocephalis ATCC 16958 through regulating key enzyme activity and the NADPH/NADP ratio with metal ion supplementation. Li L; Kang P; Ju X; Chen J; Zou H; Hu C; Yan L Prep Biochem Biotechnol; 2018 Mar; 48(3):257-263. PubMed ID: 29355459 [TBL] [Abstract][Full Text] [Related]
10. Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation. Ruijter GJG; Visser J; Rinzema A Microbiology (Reading); 2004 Apr; 150(Pt 4):1095-1101. PubMed ID: 15073319 [TBL] [Abstract][Full Text] [Related]
11. Isotopic studies of carbohydrate metabolism during basidiospore germination in Schizophyllum commune. II. Changes in specifically labeled glucose and sugar alcohol utilization. Aitken WB; Niederpruem DJ Arch Mikrobiol; 1973; 88(4):331-44. PubMed ID: 4734329 [No Abstract] [Full Text] [Related]
12. ENZYMATIC BASIS FOR D-ARBITOL PRODUCTION BY SACCHAROMYCES ROUXII. INGRAM JM; WOOD WA J Bacteriol; 1965 May; 89(5):1186-94. PubMed ID: 14292984 [TBL] [Abstract][Full Text] [Related]
14. Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis. Janek T; Dobrowolski A; Biegalska A; Mirończuk AM Microb Cell Fact; 2017 Jul; 16(1):118. PubMed ID: 28693571 [TBL] [Abstract][Full Text] [Related]
15. Pathway and regulation of erythritol formation in Leuconostoc oenos. Veiga-da-Cunha M; Santos H; Van Schaftingen E J Bacteriol; 1993 Jul; 175(13):3941-8. PubMed ID: 8391532 [TBL] [Abstract][Full Text] [Related]
17. Isotopic studies of carbohydrate metabolism during basidiospore germination in Schizophyllum commune. I. Uptake of radioactive glucose and sugar alcohols. Aitken WB; Niederpruem DJ Arch Mikrobiol; 1972; 82(2):173-83. PubMed ID: 5063435 [No Abstract] [Full Text] [Related]
18. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49. Ghezelbash GR; Nahvi I; Emamzadeh R Curr Microbiol; 2014 Aug; 69(2):149-57. PubMed ID: 24677039 [TBL] [Abstract][Full Text] [Related]