BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 4391040)

  • 1. Kinetic studies of glutamate dehydrogenase with glutamate and norvaline as substrates. Coenzyme activation and negative homotropic interactions in allosteric enzymes.
    Engel PC; Dalziel K
    Biochem J; 1969 Dec; 115(4):621-31. PubMed ID: 4391040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies of glutamate dehydrogenase. The reductive amination of 2-oxoglutarate.
    Engel PC; Dalziel K
    Biochem J; 1970 Jul; 118(3):409-19. PubMed ID: 4394334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic studies of dogfish liver glutamate dehydrogenase.
    Electricwala AH; Dickinson FM
    Biochem J; 1979 Feb; 177(2):449-59. PubMed ID: 35153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetic mechanism of ox liver glutamate dehydrogenase in the presence of the allosteric effector ADP. The oxidative deamination of L-glutamate.
    Hornby DP; Aitchison MJ; Engel PC
    Biochem J; 1984 Oct; 223(1):161-8. PubMed ID: 6149744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A steady-state random-order mechanism for the oxidative deamination of norvaline by glutamate dehydrogenase.
    LiMuti C; Bell JE
    Biochem J; 1983 Apr; 211(1):99-107. PubMed ID: 6870833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A product-inhibition study of bovine liver glutamate dehydrogenase.
    Engel PC; Chen SS
    Biochem J; 1975 Nov; 151(2):305-18. PubMed ID: 175778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic study of the oxidative deamination of L-glutamate by Peptostreptococcus asaccharolyticus glutamate dehydrogenase using a variety of coenzymes.
    Hornby DP; Engel PC
    Eur J Biochem; 1984 Sep; 143(3):557-60. PubMed ID: 6148240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual nucleotide specificity of bovine glutamate dehydrogenase. The role of negative co-operativity.
    Alex S; Bell JE
    Biochem J; 1980 Nov; 191(2):299-304. PubMed ID: 7236198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The binding of oxidized coenzymes by glutamate dehydrogenase and the effects of glutarate and purine nucleotides.
    Dalziel K; Egan RR
    Biochem J; 1972 Feb; 126(4):975-84. PubMed ID: 4403708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies of ox-liver glutamate dehydrogenase oxidative deamination of two glutamate analogues, L-threo-gamma-methylglutamate and L-alpha-amino-gamma-nitraminobutyrate, in the presence of the allosteric effector ADP.
    Hornby DP; Engel PC; Hatanaka S
    Int J Biochem; 1985; 17(7):851-4. PubMed ID: 4054426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homotropic allosteric control in clostridial glutamate dehydrogenase: different mechanisms for glutamate and NAD+?
    Hamza MA; Engel PC
    FEBS Lett; 2008 Jun; 582(13):1816-20. PubMed ID: 18472008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coenzyme-binding pathway on glutamate dehydrogenase suggested from multiple-binding sites visualized by cryo-electron microscopy.
    Wakabayashi T; Oide M; Kato T; Nakasako M
    FEBS J; 2023 Dec; 290(23):5514-5535. PubMed ID: 37682540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional studies of a glutamate dehydrogenase with known three-dimensional structure: steady-state kinetics of the forward and reverse reactions catalysed by the NAD(+)-dependent glutamate dehydrogenase of Clostridium symbiosum.
    Syed SE; Engel PC; Parker DM
    Biochim Biophys Acta; 1991 Dec; 1115(2):123-30. PubMed ID: 1764463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for the catalytic mechanism and α-ketoglutarate cooperativity of glutamate dehydrogenase.
    Prakash P; Punekar NS; Bhaumik P
    J Biol Chem; 2018 Apr; 293(17):6241-6258. PubMed ID: 29540480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The significance of abrupt transitions in Lineweaver-Burk plots with particular reference to glutamate dehydrogenase. Negative and positive co-operativity in catalytic rate constants.
    Engel PC; Ferdinand W
    Biochem J; 1973 Jan; 131(1):97-105. PubMed ID: 4352866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of glutamate dehydrogenase. The influence of ADP, GTP, and L-glutamate on the binding of the reduced coenzyme to beef-liver glutamate dehydrogenase.
    Koberstein R; Sund H
    Eur J Biochem; 1973 Jul; 36(2):545-52. PubMed ID: 4147202
    [No Abstract]   [Full Text] [Related]  

  • 17. Factors affecting the amount and the activity of the glutamate dehydrogenases of Coprinus cinereus.
    Al-Gharawi A; Moore D
    Biochim Biophys Acta; 1977 Jan; 496(1):95-102. PubMed ID: 13862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-engineering the discrimination between the oxidized coenzymes NAD+ and NADP+ in clostridial glutamate dehydrogenase and a thorough reappraisal of the coenzyme specificity of the wild-type enzyme.
    Capone M; Scanlon D; Griffin J; Engel PC
    FEBS J; 2011 Jul; 278(14):2460-8. PubMed ID: 21564547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Kinetic studies on binding of effectors to glutamate-dehydrogenase].
    Markau K
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1547. PubMed ID: 4346466
    [No Abstract]   [Full Text] [Related]  

  • 20. Deviations from Michaelis-Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholinesterase, acid phosphatase, adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose dehydrogenase, beta-galactosidase, lactate dehydrogenase, peroxidase and xanthine oxidase.
    Bardsley WG; Leff P; Kavanagh J; Waight RD
    Biochem J; 1980 Jun; 187(3):739-65. PubMed ID: 6821369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.