These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
56 related articles for article (PubMed ID: 4391355)
1. [Enzymatic cleavage of native cysteine-containing polypeptides by thermolysin (EC 3.4.4.). II. Comparison of thermolysin with alpha-protease from Crotalus atrox venom and subtilisin]. Jentsch J Z Naturforsch B; 1969 Oct; 24(10):1290-300. PubMed ID: 4391355 [No Abstract] [Full Text] [Related]
2. [Further studies on the amino acid sequence of melittin, II. Preferential cleavage of valine-, leucine- and isoleucine bonds by alpha-protease from Crotalus atrox venom]. Jentsch J Z Naturforsch B; 1969 Apr; 24(4):415-8. PubMed ID: 4389597 [No Abstract] [Full Text] [Related]
3. Application of Crotalus atrox venom alpha-protease for amino acid sequence determination. Mella K; Volz M; Pfleiderer G Anal Biochem; 1967 Nov; 21(2):219-26. PubMed ID: 5625443 [No Abstract] [Full Text] [Related]
4. Localization of the four disulfide bridges in cytotoxin II from the venom of the indian cobra (Naja naja). Takechi M; Hayashi K Biochem Biophys Res Commun; 1972 Oct; 49(2):584-90. PubMed ID: 4674343 [No Abstract] [Full Text] [Related]
5. [On the evolution of endopeptidases. II. Properties of the alpha-protease from the venom of Crotalus atrox]. Zwilling R; Pfleiderer G Hoppe Seylers Z Physiol Chem; 1967 May; 348(5):519-24. PubMed ID: 5586897 [No Abstract] [Full Text] [Related]
6. Snake venom proteinase inhibitors. II. Chemical structure of inhibitor II isolated from the venom of Russell's viper (Vipera russelli). Takahashi H; Iwanaga S; Kitagawa T; Hokama Y; Suzuki T J Biochem; 1974 Oct; 76(4):721-33. PubMed ID: 4436285 [No Abstract] [Full Text] [Related]
7. The amino acid sequence of cytotoxin II from the venom of the Indian cobra (Naja naja). Takechi M; Hayashi K; Sasaki T Mol Pharmacol; 1972 Jul; 8(4):446-51. PubMed ID: 4340873 [No Abstract] [Full Text] [Related]
8. Isolation of multiple isoforms of alpha-fibrinogenase from the Western diamondback rattlesnake, Crotalus atrox: N-terminal sequence homology with ancrod, an antithrombotic agent from Malayan viper. Hung CC; Chiou SH Biochem Biophys Res Commun; 1994 Jun; 201(3):1414-23. PubMed ID: 8024586 [TBL] [Abstract][Full Text] [Related]
9. Bovine factor X 1 (Stuart factor). Mechanism of activation by protein from Russell's viper venom. Fujikawa K; Legaz ME; Davie EW Biochemistry; 1972 Dec; 11(26):4892-9. PubMed ID: 4674072 [No Abstract] [Full Text] [Related]
10. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136 [TBL] [Abstract][Full Text] [Related]
11. Collagenolytic activity of snake venom: the absence of collagenolytic activity in the trypsin-like enzyme from Crotalus atrox venom. Simpson JW Comp Biochem Physiol B; 1971 Nov; 40(3):633-6. PubMed ID: 4332276 [No Abstract] [Full Text] [Related]
12. The disulphide bonds of erabutoxin a, a neurotoxic protein of a sea-snake (Laticauda semifasciata) venom. Endo Y; Sato S; Ishii S; Tamiya N Biochem J; 1971 May; 122(4):463-7. PubMed ID: 5166329 [TBL] [Abstract][Full Text] [Related]
13. Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species. Freitas-de-Sousa LA; Amazonas DR; Sousa LF; Sant'Anna SS; Nishiyama MY; Serrano SM; Junqueira-de-Azevedo IL; Chalkidis HM; Moura-da-Silva AM; Mourão RH Biochimie; 2015 Nov; 118():60-70. PubMed ID: 26276061 [TBL] [Abstract][Full Text] [Related]
14. Isolation of a crotalase-like protease with alpha-fibrinogenase activity from the western diamondback rattlesnake, Crotalus atrox. Chiou SH; Hung CC; Lin CW Biochem Int; 1992 Feb; 26(1):105-12. PubMed ID: 1616487 [TBL] [Abstract][Full Text] [Related]
15. Comparison of venom composition and biological activities of the subspecies Crotalus lepidus lepidus, Crotalus lepidus klauberi and Crotalus lepidus morulus from Mexico. Martínez-Romero G; Rucavado A; Lazcano D; Gutiérrez JM; Borja M; Lomonte B; Garza-García Y; Zugasti-Cruz A Toxicon; 2013 Sep; 71():84-95. PubMed ID: 23732126 [TBL] [Abstract][Full Text] [Related]
17. Nucleotide sequence encoding the snake venom fibrinolytic enzyme atroxase obtained from a Crotalus atrox venom gland cDNA library. Baker BJ; Wongvibulsin S; Nyborg J; Tu AT Arch Biochem Biophys; 1995 Mar; 317(2):357-64. PubMed ID: 7893150 [TBL] [Abstract][Full Text] [Related]
18. Oxidation deamination of L-cystine by L-amino acid oxidase from snake venom: formation of S-(2-oxo-2-carboxyethylthio)cysteine and S-(carboxymethylthio)cysteine. Ubuka T; Yao K Biochem Biophys Res Commun; 1973 Dec; 55(4):1305-10. PubMed ID: 4797836 [No Abstract] [Full Text] [Related]
19. Isolation and characterization of reptilian insulin: partial amino acid sequence of rattlesnake (Crotalus atrox) insulin. Kimmel JR; Maher MJ; Pollock HG; Vensel WH Gen Comp Endocrinol; 1976 Mar; 28(3):320-33. PubMed ID: 939409 [No Abstract] [Full Text] [Related]
20. A method for estimating Crotalus atrox venom concentrations. Johnson BD; Stahnke HL; Koonce R Toxicon; 1967 Jul; 5(1):35-8. PubMed ID: 6036248 [No Abstract] [Full Text] [Related] [Next] [New Search]