These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 4391591)
1. [Loganine as precursor in the biosynthesis of asperuloside]. Inouye H; Ueda S; Takeda Y Z Naturforsch B; 1969 Dec; 24(12):1666-7. PubMed ID: 4391591 [No Abstract] [Full Text] [Related]
2. Biosynthesis of furanochromones. Harrison PG; Bailey BK; Steck W Can J Biochem; 1971 Aug; 49(8):964-70. PubMed ID: 5120261 [No Abstract] [Full Text] [Related]
3. Biosynthesis of linear furanocoumarins. Brown SA; el-Dakhakhny M; Steck W Can J Biochem; 1970 Aug; 48(8):863-71. PubMed ID: 4318118 [No Abstract] [Full Text] [Related]
4. Biosynthesis of scopolin in tobacco. Steck W Can J Biochem; 1967 Jun; 45(6):889-96. PubMed ID: 6034703 [No Abstract] [Full Text] [Related]
5. The biosynthetic pathway from caffeic acid to scopolin in tobacco leaves. Steck W Can J Biochem; 1967 Dec; 45(12):1995-2003. PubMed ID: 6082583 [No Abstract] [Full Text] [Related]
6. The metabolism of aromatic compounds in higher plants. III. The beta-glucosides of o-coumaric, coumarinic, and melilotic acids. KOSUGE T; CONN EE J Biol Chem; 1961 Jun; 236():1617-21. PubMed ID: 13753452 [No Abstract] [Full Text] [Related]
7. Biosynthesis of terpenoid alkaloids. Battersby AR Biochem Soc Symp; 1970; 29():157-68. PubMed ID: 4944435 [No Abstract] [Full Text] [Related]
8. Metabolism of swertiamarin from Swertia japonica by human intestinal bacteria. el-Sedawy AI; Shu YZ; Hattori M; Kobashi K; Namba T Planta Med; 1989 Apr; 55(2):147-50. PubMed ID: 2748732 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of angular furanocoumarins. Steck W; Brown SA Can J Biochem; 1970 Aug; 48(8):872-80. PubMed ID: 4318550 [No Abstract] [Full Text] [Related]
10. The biosynthesis of coumarin in Melilotus alba. Stoker JR Biochem Biophys Res Commun; 1964; 14():17-20. PubMed ID: 5836500 [No Abstract] [Full Text] [Related]
11. [Biosynthesis of the isobutyryl group of mesuol (phenyl-4 coumarin group)]. Kunesch G; Polonsky J Biochimie; 1971; 53(3):431-3. PubMed ID: 5564228 [No Abstract] [Full Text] [Related]
12. Biosynthesis of furocoumarins: further studies on Ruta graveolens. Dall'Acqua F; Capozzi A; Marciani S; Caporale G Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Jul; 27(7):813-7. PubMed ID: 4404195 [No Abstract] [Full Text] [Related]
14. The accumulation and utilization of asperuloside in the Rubiaceae. TRIM AR Biochem J; 1952 Jan; 50(3):319-26. PubMed ID: 14915952 [No Abstract] [Full Text] [Related]
15. [ON MONOTERPENE GLYCOSIDES. II. ON THE STEREOCHEMISTRY OF BISDESOXYDIHYDROMONOTROPEINE, A HYDROGENATION PRODUCT OF MONOTROPEINE AND ASPERULOSIDE]. INOUYE H; ARAI T Chem Pharm Bull (Tokyo); 1964 Aug; 12():968-71. PubMed ID: 14220877 [No Abstract] [Full Text] [Related]
16. Biosynthesis of cyanogenic glycosides. Conn EE Biochem Soc Symp; 1973; (38):277-302. PubMed ID: 4620367 [No Abstract] [Full Text] [Related]
17. [Renal elimination kinetics of various several cardiac glycosides]. Kramer P; Scheler F Dtsch Med Wochenschr; 1972 Oct; 97(40):1485-90. PubMed ID: 5071762 [No Abstract] [Full Text] [Related]
18. [On the biogenetic origin of the isovaleryl group of mammeisin (4-phenyl coumarin)]. Kunesch G; Hildesheim R; Polonsky J C R Acad Hebd Seances Acad Sci D; 1969 Apr; 268(16):2143-5. PubMed ID: 4980355 [No Abstract] [Full Text] [Related]
19. Biosynthesis of the coumarins. III. The role of glycosides in the formation of coumarin by Hierochloe odorata. BROWN SA Can J Biochem Physiol; 1962 May; 40():607-18. PubMed ID: 13873723 [No Abstract] [Full Text] [Related]
20. Biosynthesis of sinigrin. VI. Incorporation from homomethionine (2-14C, 15N) and some labelled compounds into sinigrin. Matsuo M; Yamazaki M Chem Pharm Bull (Tokyo); 1968 Jun; 16(6):1034-9. PubMed ID: 5710070 [No Abstract] [Full Text] [Related] [Next] [New Search]