These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 43918)

  • 1. The apparent loss of cytochrome P-450 associated with metabolic activation of carbon tetrachloride.
    Yamazoe Y; Sugiura M; Kamataki T; Kato R
    Jpn J Pharmacol; 1979 Oct; 29(5):715-21. PubMed ID: 43918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: role of cytochrome P-450.
    Sipes IG; Krishna G; Gillette JR
    Life Sci; 1977 May; 20(9):1541-8. PubMed ID: 17803
    [No Abstract]   [Full Text] [Related]  

  • 3. [Formation of chloroform from carbon tetrachloride in liver microsomes, lipid peroxidation and destruction of cytochrome P-450].
    Reiner O; Athanassopoulos S; Hellmer KH; Murray RE; Uehleke H
    Arch Toxikol; 1972; 29(3):219-33. PubMed ID: 4404917
    [No Abstract]   [Full Text] [Related]  

  • 4. Preventive effect of isoflurane on destruction of cytochrome P450 during reductive dehalogenation of carbon tetrachloride in guinea-pig liver microsomes.
    Fujii K
    Drug Metabol Drug Interact; 1997; 14(2):99-107. PubMed ID: 9893740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450.
    Ahr HJ; King LJ; Nastainczyk W; Ullrich V
    Biochem Pharmacol; 1980 Oct; 29(20):2855-61. PubMed ID: 7437085
    [No Abstract]   [Full Text] [Related]  

  • 6. Carbon tetrachloride-induced loss of microsomal glucose 6-phosphatase and cytochrome P-450 in vitro.
    Masuda Y
    Jpn J Pharmacol; 1981 Feb; 31(1):107-16. PubMed ID: 6265675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of the suicidal, reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride.
    Manno M; De Matteis F; King LJ
    Biochem Pharmacol; 1988 May; 37(10):1981-90. PubMed ID: 3377806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of cytochrome P-450 haem by carbon tetrachloride and 2-allyl-2-isopropylacetamide in rat liver in vivo and in vitro. Involvement of non-carbon monoxide-forming mechanisms.
    Guzelian PS; Swisher RW
    Biochem J; 1979 Dec; 184(3):481-9. PubMed ID: 120199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-catalysed, O2-independent inactivation of NADPH- or dithionite-reduced microsomal cytochrome P-450 by carbon tetrachloride.
    de Groot H; Haas W
    Biochem Pharmacol; 1981 Aug; 30(16):2343-7. PubMed ID: 7295345
    [No Abstract]   [Full Text] [Related]  

  • 10. Isoflurane enhances dechlorination of carbon tetrachloride in guinea-pig liver microsomes.
    Fujii K; Rahman MM; Yuge O
    J Appl Toxicol; 1996; 16(3):249-53. PubMed ID: 8818866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of 14 C-carbon tetrachloride to microsomal proteins in vitro and formation of CHC1 3 by reduced liver microsomes.
    Uehleke H; Hellmer KH; Tabarelli S
    Xenobiotica; 1973 Jan; 3(1):1-11. PubMed ID: 4144825
    [No Abstract]   [Full Text] [Related]  

  • 12. Cytochrome P-450-dependent formation of reactive oxygen radicals: isozyme-specific inhibition of P-450-mediated reduction of oxygen and carbon tetrachloride.
    Persson JO; Terelius Y; Ingelman-Sundberg M
    Xenobiotica; 1990 Sep; 20(9):887-900. PubMed ID: 2122605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH-dependent and -independent loss of cytochrome P-450 in control and phenobarbital-induced rat hepatic microsomes incubated with carbon tetrachloride.
    Moody DE; Head B; Woo CH; James JL; Smuckler EA
    Exp Mol Pathol; 1986 Jun; 44(3):318-28. PubMed ID: 3720920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of dichloromethyl carbene as a metabolite of carbon tetrachloride.
    Pohl LR; George JW
    Biochem Biophys Res Commun; 1983 Dec; 117(2):367-71. PubMed ID: 6661232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The in vitro NADPH-dependent inhibition by CCl4 of the ATP-dependent calcium uptake of hepatic microsomes from male rats. Studies on the mechanism of the inactivation of the hepatic microsomal calcium pump by the CCl3.radical.
    Srivastava SP; Chen NQ; Holtzman JL
    J Biol Chem; 1990 May; 265(15):8392-9. PubMed ID: 2140358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic activation of halothane and its covalent binding to liver endoplasmic proteins in vitro.
    Uehleke H; Hellmer KH; Tabarelli-Poplawski S
    Naunyn Schmiedebergs Arch Pharmacol; 1973; 279(1):39-52. PubMed ID: 4147966
    [No Abstract]   [Full Text] [Related]  

  • 17. The nature of the in vitro irreversible binding of carbon tetrachloride to microsomal lipids.
    Villarruel MC; Díaz Gómez MI; Castro JA
    Toxicol Appl Pharmacol; 1975 Jul; 33(1):106-14. PubMed ID: 240222
    [No Abstract]   [Full Text] [Related]  

  • 18. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo.
    Uehleke H; Werner T
    Arch Toxicol; 1975 Dec; 34(4):289-308. PubMed ID: 3152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-Propanol treatment induces selectively the metabolism of carbon tetrachloride to phosgene. Implications for carbon tetrachloride hepatotoxicity.
    Harris RN; Anders MW
    Drug Metab Dispos; 1981; 9(6):551-6. PubMed ID: 6120815
    [No Abstract]   [Full Text] [Related]  

  • 20. The stimulatory effects of carbon tetrachloride on peroxidative reactions in rat liver fractions in vitro. Interaction sites in the endoplasmic reticulum.
    Slater TF; Sawyer BC
    Biochem J; 1971 Aug; 123(5):815-21. PubMed ID: 4399400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.