BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 4392009)

  • 1. [Study of the metabolism of dicarboxylic acids and of pyruvate in sulfo-reducing bacteria. I. Study of the enzyme oxidation of fumarate in acetate].
    Hatchikian EC; Le Gall J
    Ann Inst Pasteur (Paris); 1970 Feb; 118(2):125-42. PubMed ID: 4392009
    [No Abstract]   [Full Text] [Related]  

  • 2. [Study of dicarboxylic acid and pyruvate metabolism in sulfate-reducing bacteria. II. Electron transport; final acceptors].
    Hatchikian EC; Le Gall J
    Ann Inst Pasteur (Paris); 1970 Mar; 118(3):288-301. PubMed ID: 5430708
    [No Abstract]   [Full Text] [Related]  

  • 3. Two mutations affecting utilization of C4-dicarboxylic acids by Escherichia coli.
    Herbert AA; Guest JR
    J Gen Microbiol; 1970 Oct; 63(2):151-62. PubMed ID: 4929473
    [No Abstract]   [Full Text] [Related]  

  • 4. [Carbon and energy sources of biosynthesis in sulfate reducing bacteria].
    Sorokin IuI
    Mikrobiologiia; 1966; 35(5):761-6. PubMed ID: 6002773
    [No Abstract]   [Full Text] [Related]  

  • 5. The inducible transport of DI- and tricarboxylic acid anions across the membrane of Azotobacter vinelandii.
    Postma PW; van Dam K
    Biochim Biophys Acta; 1971 Dec; 249(2):515-27. PubMed ID: 5134194
    [No Abstract]   [Full Text] [Related]  

  • 6. Relationship between the growth rate of mycobacteria and their ability to utilize organic acids as the sole source of carbon.
    Tsukamura M
    Jpn J Microbiol; 1968 Dec; 12(4):534-6. PubMed ID: 4974281
    [No Abstract]   [Full Text] [Related]  

  • 7. Growth of sulphate-reducing bacteria by fumarate dismutation.
    Miller JD; Wakerley DS
    J Gen Microbiol; 1966 Apr; 43(1):101-7. PubMed ID: 5953822
    [No Abstract]   [Full Text] [Related]  

  • 8. [Study on constructive metabolism of sulphate reducing bacteria using C-14].
    Sorokin IuI
    Mikrobiologiia; 1966; 35(6):967-77. PubMed ID: 6003015
    [No Abstract]   [Full Text] [Related]  

  • 9. [Ferricyanide and fumarate-reducing enzymes in the mitochondria of helminths].
    Benediktov II
    Angew Parasitol; 1972 Feb; 13(1):28-35. PubMed ID: 5053174
    [No Abstract]   [Full Text] [Related]  

  • 10. [Comparative characteristics of the transport systems of C4-dicarboxylic acids in cultures of the genera Halobacterium and Halococcus].
    Zviagintseva IS; Tarasov AL; Plakunov VK
    Mikrobiologiia; 1984; 53(3):520-4. PubMed ID: 6748976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake of C4 dicarboxylates and pyruvate by Rhodopseudomonas spheroides.
    Gibson J
    J Bacteriol; 1975 Aug; 123(2):471-80. PubMed ID: 808529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keto acid metabolism in Desulfovibrio.
    Lewis AJ; Miller JD
    J Gen Microbiol; 1975 Oct; 90(2):286-92. PubMed ID: 1194893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malate dismutation by Desulfovibrio.
    Miller JD; Neumann PM; Elford L; Wakerley DS
    Arch Mikrobiol; 1970; 71(3):214-9. PubMed ID: 5469567
    [No Abstract]   [Full Text] [Related]  

  • 14. Aldosterone synthesis by adrenal mitochondria. II. The effect of citric acid cycle intermediates; identification of the soluble stimulatory factor as fumarase.
    Tallan HH; Psychoyos S; Greengard P
    J Biol Chem; 1967 Apr; 242(8):1912-4. PubMed ID: 4381599
    [No Abstract]   [Full Text] [Related]  

  • 15. Suppression of a dicarboxylic acid transport mutant phenotype in Escherichia coli K12.
    Kay WW
    Biochim Biophys Acta; 1972 May; 264(3):522-9. PubMed ID: 4554902
    [No Abstract]   [Full Text] [Related]  

  • 16. Bacterial metabolism of 5-aminosalicylic acid: enzymic conversion to L-malate, pyruvate and ammonia.
    Stolz A; Knackmuss HJ
    J Gen Microbiol; 1993 May; 139(5):1019-25. PubMed ID: 8336104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Photoassimilation of organic compounds by Thiocapsa roseopersicina].
    Zhukov VG; Firsov NN
    Mikrobiologiia; 1976; 45(6):946-50. PubMed ID: 1012053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ability of Schizosaccharomyces acidodevoratus to utilize some acids of the Krebs cycle.
    Jakubowska J; Piatkiewicz A
    Acta Microbiol Pol B; 1971; 3(1):7-12. PubMed ID: 4396924
    [No Abstract]   [Full Text] [Related]  

  • 19. [Biochemistry and genetics of organic acid transport in bacteria].
    Gershanovich VN
    Usp Sovrem Biol; 1975; 79(1):21-32. PubMed ID: 804772
    [No Abstract]   [Full Text] [Related]  

  • 20. Urinary excretion of citric acid cycle metabolites in premature newborn infants with and without a respiratory distress syndrome.
    Wu PY; Oh W; Polar E; Metcoff J
    Pediatrics; 1965 Dec; 36(6):856-60. PubMed ID: 5846827
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.