These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 4392009)
1. [Study of the metabolism of dicarboxylic acids and of pyruvate in sulfo-reducing bacteria. I. Study of the enzyme oxidation of fumarate in acetate]. Hatchikian EC; Le Gall J Ann Inst Pasteur (Paris); 1970 Feb; 118(2):125-42. PubMed ID: 4392009 [No Abstract] [Full Text] [Related]
2. [Study of dicarboxylic acid and pyruvate metabolism in sulfate-reducing bacteria. II. Electron transport; final acceptors]. Hatchikian EC; Le Gall J Ann Inst Pasteur (Paris); 1970 Mar; 118(3):288-301. PubMed ID: 5430708 [No Abstract] [Full Text] [Related]
3. Two mutations affecting utilization of C4-dicarboxylic acids by Escherichia coli. Herbert AA; Guest JR J Gen Microbiol; 1970 Oct; 63(2):151-62. PubMed ID: 4929473 [No Abstract] [Full Text] [Related]
4. [Carbon and energy sources of biosynthesis in sulfate reducing bacteria]. Sorokin IuI Mikrobiologiia; 1966; 35(5):761-6. PubMed ID: 6002773 [No Abstract] [Full Text] [Related]
5. The inducible transport of DI- and tricarboxylic acid anions across the membrane of Azotobacter vinelandii. Postma PW; van Dam K Biochim Biophys Acta; 1971 Dec; 249(2):515-27. PubMed ID: 5134194 [No Abstract] [Full Text] [Related]
6. Relationship between the growth rate of mycobacteria and their ability to utilize organic acids as the sole source of carbon. Tsukamura M Jpn J Microbiol; 1968 Dec; 12(4):534-6. PubMed ID: 4974281 [No Abstract] [Full Text] [Related]
7. Growth of sulphate-reducing bacteria by fumarate dismutation. Miller JD; Wakerley DS J Gen Microbiol; 1966 Apr; 43(1):101-7. PubMed ID: 5953822 [No Abstract] [Full Text] [Related]
8. [Study on constructive metabolism of sulphate reducing bacteria using C-14]. Sorokin IuI Mikrobiologiia; 1966; 35(6):967-77. PubMed ID: 6003015 [No Abstract] [Full Text] [Related]
9. [Ferricyanide and fumarate-reducing enzymes in the mitochondria of helminths]. Benediktov II Angew Parasitol; 1972 Feb; 13(1):28-35. PubMed ID: 5053174 [No Abstract] [Full Text] [Related]
10. [Comparative characteristics of the transport systems of C4-dicarboxylic acids in cultures of the genera Halobacterium and Halococcus]. Zviagintseva IS; Tarasov AL; Plakunov VK Mikrobiologiia; 1984; 53(3):520-4. PubMed ID: 6748976 [TBL] [Abstract][Full Text] [Related]
11. Uptake of C4 dicarboxylates and pyruvate by Rhodopseudomonas spheroides. Gibson J J Bacteriol; 1975 Aug; 123(2):471-80. PubMed ID: 808529 [TBL] [Abstract][Full Text] [Related]
12. Keto acid metabolism in Desulfovibrio. Lewis AJ; Miller JD J Gen Microbiol; 1975 Oct; 90(2):286-92. PubMed ID: 1194893 [TBL] [Abstract][Full Text] [Related]
14. Aldosterone synthesis by adrenal mitochondria. II. The effect of citric acid cycle intermediates; identification of the soluble stimulatory factor as fumarase. Tallan HH; Psychoyos S; Greengard P J Biol Chem; 1967 Apr; 242(8):1912-4. PubMed ID: 4381599 [No Abstract] [Full Text] [Related]
15. Suppression of a dicarboxylic acid transport mutant phenotype in Escherichia coli K12. Kay WW Biochim Biophys Acta; 1972 May; 264(3):522-9. PubMed ID: 4554902 [No Abstract] [Full Text] [Related]
16. Bacterial metabolism of 5-aminosalicylic acid: enzymic conversion to L-malate, pyruvate and ammonia. Stolz A; Knackmuss HJ J Gen Microbiol; 1993 May; 139(5):1019-25. PubMed ID: 8336104 [TBL] [Abstract][Full Text] [Related]
17. [Photoassimilation of organic compounds by Thiocapsa roseopersicina]. Zhukov VG; Firsov NN Mikrobiologiia; 1976; 45(6):946-50. PubMed ID: 1012053 [TBL] [Abstract][Full Text] [Related]
18. The ability of Schizosaccharomyces acidodevoratus to utilize some acids of the Krebs cycle. Jakubowska J; Piatkiewicz A Acta Microbiol Pol B; 1971; 3(1):7-12. PubMed ID: 4396924 [No Abstract] [Full Text] [Related]
19. [Biochemistry and genetics of organic acid transport in bacteria]. Gershanovich VN Usp Sovrem Biol; 1975; 79(1):21-32. PubMed ID: 804772 [No Abstract] [Full Text] [Related]
20. Urinary excretion of citric acid cycle metabolites in premature newborn infants with and without a respiratory distress syndrome. Wu PY; Oh W; Polar E; Metcoff J Pediatrics; 1965 Dec; 36(6):856-60. PubMed ID: 5846827 [No Abstract] [Full Text] [Related] [Next] [New Search]