These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 4392239)

  • 1. The chemistry of flavins and flavoproteins: aerobic photochemistry.
    Penzer GR
    Biochem J; 1970 Feb; 116(4):733-43. PubMed ID: 4392239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chemistry of flavines and flavorproteins. Photoreduction of flavines by amino acids.
    Penzer GR; Radda GK
    Biochem J; 1968 Sep; 109(2):259-68. PubMed ID: 4300510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pH dependence of the reactions of flavin triplet states with amino acids. A laser flash photolysis study.
    Heelis PF; Parsons BJ; Phillips GO
    Biochim Biophys Acta; 1979 Oct; 587(3):455-62. PubMed ID: 45004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen uptake after electron transfer from amines, amino acids and ascorbic acid to triplet flavins in air-saturated aqueous solution.
    Görner H
    J Photochem Photobiol B; 2007 May; 87(2):73-80. PubMed ID: 17395476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the interpretation of quantitative structure-function activity relationship data for lactate oxidase.
    Yorita K; Misaki H; Palfey BA; Massey V
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2480-5. PubMed ID: 10706608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for carbanions and covalent N 5 -flavin-carbanion adducts as catalytic intermediates in the oxidation of nitroethane by D-amino acid oxidase.
    Porter DJ; Voet JG; Bright HJ
    J Biol Chem; 1973 Jun; 248(12):4400-16. PubMed ID: 4145800
    [No Abstract]   [Full Text] [Related]  

  • 7. Involvement of a flavin iminoquinone methide in the formation of 6-hydroxyflavin mononucleotide in trimethylamine dehydrogenase: a rationale for the existence of 8alpha-methyl and C6-linked covalent flavoproteins.
    Mewies M; Basran J; Packman LC; Hille R; Scrutton NS
    Biochemistry; 1997 Jun; 36(23):7162-8. PubMed ID: 9188716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox properties of LOV domains: chemical versus photochemical reduction, and influence on the photocycle.
    Nöll G; Hauska G; Hegemann P; Lanzl K; Nöll T; von Sanden-Flohe M; Dick B
    Chembiochem; 2007 Dec; 8(18):2256-64. PubMed ID: 17990262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavin-photosensitized reactions of retinol and stilbene.
    Gordon-Walker A; Radda GK
    Biochem J; 1970 Dec; 120(4):673-81. PubMed ID: 5495148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transient intermediate in the reaction catalyzed by (S)-mandelate dehydrogenase from Pseudomonas putida.
    Dewanti AR; Mitra B
    Biochemistry; 2003 Nov; 42(44):12893-901. PubMed ID: 14596603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of reactions of flavin mononucleotide triplet with aromatic amino acids.
    Tsentalovich YP; Lopez JJ; Hore PJ; Sagdeev RZ
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Jul; 58(9):2043-50. PubMed ID: 12164501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreactions of flavin mononucleotide and a flavoprotein with zwitterionic buffers.
    Yamazaki RK; Tolbert NE
    Biochim Biophys Acta; 1970 Jan; 197(1):90-2. PubMed ID: 4312656
    [No Abstract]   [Full Text] [Related]  

  • 14. ROLE OF SEMIQUINONES IN FLAVOPROTEIN CATALYSIS.
    MASSEY V; GIBSON QH
    Fed Proc; 1964; 23():18-29. PubMed ID: 14114688
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanistic Studies of an Amine Oxidase Derived from d-Amino Acid Oxidase.
    Trimmer EE; Wanninayake US; Fitzpatrick PF
    Biochemistry; 2017 Apr; 56(14):2024-2030. PubMed ID: 28355481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of glycine 81 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate specificity and oxidase activity.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Aug; 43(33):10692-700. PubMed ID: 15311930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Oxidation of NADH by singlet oxygen generated by triplet flavin].
    Vekshin NL; Mironov GP
    Biofizika; 1981; 26(6):953-9. PubMed ID: 7317503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodynamic crosslinking of proteins. III. Kinetics of the FMN- and rose bengal-sensitized photooxidation and intermolecular crosslinking of model tyrosine-containing N-(2-hydroxypropyl)methacrylamide copolymers.
    Spikes JD; Shen HR; Kopecková P; Kopecek J
    Photochem Photobiol; 1999 Aug; 70(2):130-7. PubMed ID: 10461454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.
    Sucharitakul J; Phongsak T; Entsch B; Svasti J; Chaiyen P; Ballou DP
    Biochemistry; 2007 Jul; 46(29):8611-23. PubMed ID: 17595116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.