These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 4392239)
21. Reduction of methemoglobin via electron transfer from photoreduced flavin: restoration of O2-binding of concentrated hemoglobin solution coencapsulated in phospholipid vesicles. Sakai H; Masada Y; Onuma H; Takeoka S; Tsuchida E Bioconjug Chem; 2004; 15(5):1037-45. PubMed ID: 15366957 [TBL] [Abstract][Full Text] [Related]
22. A LOV story: the signaling state of the phot1 LOV2 photocycle involves chromophore-triggered protein structure relaxation, as probed by far-UV time-resolved optical rotatory dispersion spectroscopy. Chen E; Swartz TE; Bogomolni RA; Kliger DS Biochemistry; 2007 Apr; 46(15):4619-24. PubMed ID: 17371048 [TBL] [Abstract][Full Text] [Related]
23. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I; Shaffer C; Ballou DP; Peterson JA Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531 [TBL] [Abstract][Full Text] [Related]
24. Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects. Yuan H; Xin Y; Hamelberg D; Gadda G J Am Chem Soc; 2011 Nov; 133(46):18957-65. PubMed ID: 21999550 [TBL] [Abstract][Full Text] [Related]
26. The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion. Tinikul R; Pitsawong W; Sucharitakul J; Nijvipakul S; Ballou DP; Chaiyen P Biochemistry; 2013 Oct; 52(39):6834-43. PubMed ID: 24004065 [TBL] [Abstract][Full Text] [Related]
27. STUDIES ON THE PHOTOINACTIVATION OF D-AMINOACID OXIDASE. ICHIKAWA Y; YAMANO T Tokushima J Exp Med; 1963 Nov; 10():156-69. PubMed ID: 14157485 [No Abstract] [Full Text] [Related]
28. Perturbation of the ground-state electronic structure of FMN by the conserved cysteine in phototropin LOV2 domains. Alexandre MT; van Grondelle R; Hellingwerf KJ; Robert B; Kennis JT Phys Chem Chem Phys; 2008 Nov; 10(44):6693-702. PubMed ID: 18989482 [TBL] [Abstract][Full Text] [Related]
29. Interaction of two arginine residues in lactate oxidase with the enzyme flavin: conversion of FMN to 8-formyl-FMN. Yorita K; Matsuoka T; Misaki H; Massey V Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13039-44. PubMed ID: 11078532 [TBL] [Abstract][Full Text] [Related]
30. Differences in proton-coupled electron-transfer reactions of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) between buffered and unbuffered aqueous solutions. Tan SL; Kan JM; Webster RD J Phys Chem B; 2013 Nov; 117(44):13755-66. PubMed ID: 24079606 [TBL] [Abstract][Full Text] [Related]
31. Kinetic and Binding Studies of Streptococcus pneumoniae Type 2 Isopentenyl Diphosphate:Dimethylallyl Diphosphate Isomerase. Janczak MW; Poulter CD Biochemistry; 2016 Apr; 55(15):2260-8. PubMed ID: 27003727 [TBL] [Abstract][Full Text] [Related]
32. Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins. Westberg M; Bregnhøj M; Etzerodt M; Ogilby PR J Phys Chem B; 2017 Mar; 121(12):2561-2574. PubMed ID: 28257211 [TBL] [Abstract][Full Text] [Related]
33. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains. Sevrioukova I; Truan G; Peterson JA Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532 [TBL] [Abstract][Full Text] [Related]
34. Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5'-phosphate photolysis. Wong TW; Cheng CW; Hsieh ZJ; Liang JY J Photochem Photobiol B; 2017 Aug; 173():672-680. PubMed ID: 28715781 [TBL] [Abstract][Full Text] [Related]
35. The photoinduced triplet of flavins and its protonation states. Kowalczyk RM; Schleicher E; Bittl R; Weber S J Am Chem Soc; 2004 Sep; 126(36):11393-9. PubMed ID: 15355123 [TBL] [Abstract][Full Text] [Related]
36. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Whittaker MM; Ballou DP; Whittaker JW Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494 [TBL] [Abstract][Full Text] [Related]
37. FMN phosphatase and FAD pyrophosphatase in rat intestinal brush borders: role in intestinal absorption of dietary riboflavin. Akiyama T; Selhub J; Rosenberg IH J Nutr; 1982 Feb; 112(2):263-8. PubMed ID: 6120218 [TBL] [Abstract][Full Text] [Related]
38. A bifunctional molecule as an artificial flavin mononucleotide cyclase and a chemosensor for selective fluorescent detection of flavins. Rhee HW; Choi SJ; Yoo SH; Jang YO; Park HH; Pinto RM; Cameselle JC; Sandoval FJ; Roje S; Han K; Chung DS; Suh J; Hong JI J Am Chem Soc; 2009 Jul; 131(29):10107-12. PubMed ID: 19569646 [TBL] [Abstract][Full Text] [Related]
39. Isomerization of Cholecalciferol through Energy Transfer as a Protective Mechanism Against Flavin-Sensitized Photooxidation. Scurachio RS; Santos WG; Nascimento ES; Skibsted LH; Cardoso DR J Agric Food Chem; 2015 May; 63(18):4629-37. PubMed ID: 25891983 [TBL] [Abstract][Full Text] [Related]
40. The influence of fluorescence concentration quenching on the emission anisotropy of flavins in glycerine-water solutions. Grajek H; Bojarski C; Zurkowska G; Drabent R Photochem Photobiol; 1992 Mar; 55(3):381-7. PubMed ID: 1561236 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]