These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 4392411)

  • 1. Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. 3. Control of glucose 6-phosphate dehydrogenase.
    Sanwal BD
    J Biol Chem; 1970 Apr; 245(7):1626-31. PubMed ID: 4392411
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. I. Control characteristics of malate dehydrogenase.
    Sanwal BD
    J Biol Chem; 1969 Apr; 244(7):1831-7. PubMed ID: 4305466
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulatory mechanisms involving nicotinamide adenine nucleotides as all teric effectors. II. Control of phosphoenolpyruvate carboxykinase.
    Wright JA; Sanwal BD
    J Biol Chem; 1969 Apr; 244(7):1838-45. PubMed ID: 4388616
    [No Abstract]   [Full Text] [Related]  

  • 4. [Glucose-6-phosphate dehydrogenase in autotrophic microorganisms. II. Regulation of activity of glucose-6-phosphate dehydrogenase in Euglena gracilis and Rhodopseudomonas spheroides].
    Ohmann E; Borriss R; Rindt KP
    Z Allg Mikrobiol; 1970; 10(1):37-53. PubMed ID: 4393876
    [No Abstract]   [Full Text] [Related]  

  • 5. Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-specific glucose 6-phosphate dehydrogenases of Acetobacter xylinum and their role in the regulation of the pentose cycle.
    Benziman M; Mazover A
    J Biol Chem; 1973 Mar; 248(5):1603-8. PubMed ID: 4144393
    [No Abstract]   [Full Text] [Related]  

  • 6. Glucose-6-phosphate dehydrogenase from Escherichia coli and from a "high-level" mutant.
    Banerjee S; Fraenkel DG
    J Bacteriol; 1972 Apr; 110(1):155-60. PubMed ID: 4401601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and regulation of glucose-6-phosphate dehydrogenase from Bacillus licheniformis.
    Opheim D; Bernlohr RW
    J Bacteriol; 1973 Dec; 116(3):1150-9. PubMed ID: 4148096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinamide-adenine dinucleotide pyrophosphatase of Cambaroides japonica.
    Yamaguchi K; Shimoyama M; Ueda I
    Biochim Biophys Acta; 1969 Jan; 171(1):167-77. PubMed ID: 4387593
    [No Abstract]   [Full Text] [Related]  

  • 9. Purification and partial characterization of glucose 6-phosphate dehydrogenase from cow adrenal cortex.
    Criss WE; McKerns KW
    Biochemistry; 1968 Jan; 7(1):125-34. PubMed ID: 4394748
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory characteristics of the diphosphopyridine nucleotide-specific malic enzyme of Escherichia coli.
    Sanwal BD
    J Biol Chem; 1970 Mar; 245(5):1212-6. PubMed ID: 4313705
    [No Abstract]   [Full Text] [Related]  

  • 12. Glucose-6-phosphate dehydrogenase from the chemolithotroph Thiobacillus ferrooxidans.
    Tabita R; Lundgren DG
    J Bacteriol; 1971 Oct; 108(1):343-52. PubMed ID: 4399340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Regulation of the glucose-6-phosphate dehydrogenase of different bacterial species by ATP].
    Schindler J; Schlegel HG
    Arch Mikrobiol; 1969; 66(1):69-78. PubMed ID: 4393658
    [No Abstract]   [Full Text] [Related]  

  • 14. [Regulation of glucose-6-phosphate dehydrogenase from Hydrogenomonas by ATP and reduced pyridine nucleotides].
    Blackkolb F; Schlegel HG
    Arch Mikrobiol; 1968; 63(2):177-96. PubMed ID: 4387479
    [No Abstract]   [Full Text] [Related]  

  • 15. Glucose 6-phosphate and 6-phosphogluconate dehydrogenases and their control mechanisms in Escherichia coli K-12.
    Westwood AW; Doelle HW
    Microbios; 1974; 9(35):143-65. PubMed ID: 4151756
    [No Abstract]   [Full Text] [Related]  

  • 16. Malic enzyme of Escherichia coli. Diversity of the effectors controlling enzyme activity.
    Sanwal BD; Smando R
    J Biol Chem; 1969 Apr; 244(7):1817-23. PubMed ID: 4388614
    [No Abstract]   [Full Text] [Related]  

  • 17. Binding of NAD and NADP dimers to NAD- and NADP-dependent dehydrogenases.
    Kovár J; Klukanová H
    Biochim Biophys Acta; 1984 Jul; 788(1):98-109. PubMed ID: 6378255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction and regulation of a nicotinamide adenine dinucleotide-specific 6-phosphogluconate dehydrogenase in Streptococcus faecalis.
    Brown AT; Wittenberger CL
    J Bacteriol; 1972 Jan; 109(1):106-15. PubMed ID: 4400413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli.
    Murai T; Tokushige M; Nagai J; Katsuki H
    Biochem Biophys Res Commun; 1971 May; 43(4):875-81. PubMed ID: 4397922
    [No Abstract]   [Full Text] [Related]  

  • 20. Glucose-6-phosphate dehydrogenase from a tetracycline producing strain of Streptomyces aureofaciens: some properties and regulatory aspects of the enzyme.
    Neuzil J; Novotná J; Erban V; Bĕhal V; Hostálek Z
    Biochem Int; 1988 Jul; 17(1):187-96. PubMed ID: 3142475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.