BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 4393120)

  • 41. Activity of glutamate and malate dehydrogenases in liver and kidneys of rats subjected to multiple exposures of mercuric chloride and sodium selenite.
    Chmielnicka J; Komsta-Szumska E; Sułkowska B
    Bioinorg Chem; 1978 Apr; 8(4):291-302. PubMed ID: 647059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation of heart muscle mitochondrial malate dehydrogenase activity. II. p-Mercuribenzoate activation, model of a possible allosteric control mechanism for substrate homeostasis.
    Sulebele G; Silverstein E
    Biochemistry; 1970 Jan; 9(2):283-90. PubMed ID: 4312849
    [No Abstract]   [Full Text] [Related]  

  • 43. A reactive histidine residue at the active site of pig heart mitochondrial malate dehydrogenase.
    Anderton BH; Rabin BR
    Biochem J; 1970 Jun; 118(2):17P. PubMed ID: 4394947
    [No Abstract]   [Full Text] [Related]  

  • 44. Fatty acid oxidation in embryonic chick tissues.
    Pugh E; Sidbury JB
    Biochim Biophys Acta; 1971 Sep; 239(3):376-83. PubMed ID: 5113500
    [No Abstract]   [Full Text] [Related]  

  • 45. Pyridine nucleotide transhydrogenases.
    Kaplan NO
    Harvey Lect; 1971-1972; 66():105-33. PubMed ID: 4403442
    [No Abstract]   [Full Text] [Related]  

  • 46. Rate of release of cytoplasmic and mitochondrial enzymes from the isolated and perfused rat liver treated with phalloidin.
    Ruggiero G
    J Lab Clin Med; 1973 Nov; 82(5):695-703. PubMed ID: 4746813
    [No Abstract]   [Full Text] [Related]  

  • 47. [Oxidation of glutamate by pig heart sarcosomes: effects of inhibitors and NH4+ ions].
    Durand R; Pialoux N; Godinot C; Gautheron D
    Bull Soc Chim Biol (Paris); 1965; 47(11):2115-24. PubMed ID: 4379869
    [No Abstract]   [Full Text] [Related]  

  • 48. The isozymes of glutamate-aspartate transaminase. Mechanism of inhibition of dicarboxylic acids.
    Michuda CM; Martinez-Carrion M
    J Biol Chem; 1970 Jan; 245(2):262-9. PubMed ID: 4312670
    [No Abstract]   [Full Text] [Related]  

  • 49. Inhibition by oxalomalate of isocitrate (NADP+) dehydrogenase.
    Ruffo A; Moratti R; Montani A; d'Eril GL
    Ital J Biochem; 1974; 23(6):357-70. PubMed ID: 4156530
    [No Abstract]   [Full Text] [Related]  

  • 50. [Heterogeneity and regulation of glutamate dehydrogenase activity in mammalian brain and liver].
    Movsesian SG; Avetisian SG; Ekizian NG
    Vopr Biokhim Mozga; 1978; 13():228-47. PubMed ID: 41364
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of oxalacetate metabolism in liver mitochondria. Evidence for nicotinamide adenine dinucleotide-malate dehydrogenase equilibrium and the role of phosphoenolpyruvate carboxykinase in the control of oxalacetate metabolism in intact guinea pig and rat liver mitochondria.
    Garber AJ; Salganicoff L
    J Biol Chem; 1973 Mar; 248(5):1520-9. PubMed ID: 4144388
    [No Abstract]   [Full Text] [Related]  

  • 52. [The effect of cholesterol on the activity of several liver mitochondria enzymes in vitro].
    Sidorenkov IV; Gil'miiarova FN; Radomskaia VM; Shpigel' AS
    Biull Eksp Biol Med; 1974 Nov; 78(11):52-4. PubMed ID: 4447841
    [No Abstract]   [Full Text] [Related]  

  • 53. [NADP- and NAD-malate dehydrogenase in the liver and renal cortex in rats and hormonal regulation of their activity].
    Tsoncheva AV
    Eksp Med Morfol; 1974; 13(2):89-95. PubMed ID: 4155362
    [No Abstract]   [Full Text] [Related]  

  • 54. [The intracellular distribution of DPN- and TPN-specific isocitrate dehydrogenase].
    Goebell H; Pette D
    Enzymol Biol Clin (Basel); 1967; 8(3):161-75. PubMed ID: 4383622
    [No Abstract]   [Full Text] [Related]  

  • 55. NAD(P)-linked oxidoreductions and the nicotinamide nucleotide specificity of glutamate dehydrogenase in rat-liver mitochondria.
    Papa S; Tager JM; Francavilla A; Quagliariello E
    Biochim Biophys Acta; 1969 Jan; 172(1):20-9. PubMed ID: 4178848
    [No Abstract]   [Full Text] [Related]  

  • 56. The inhibition by 2,4-dinitrophenol of the removal of oxaloacetate formed by the oxidation of succinate by rat-liver and -heart mitochondria.
    Oestreicher AB; Van den Bergh SG; Slater EC
    Biochim Biophys Acta; 1969 May; 180(1):45-55. PubMed ID: 5787271
    [No Abstract]   [Full Text] [Related]  

  • 57. Malic dehydrogenase. VII. The catalytic mechanism and possible role of identical protein subunits.
    Harada K; Wolfe RG
    J Biol Chem; 1968 Aug; 243(15):4131-7. PubMed ID: 4299102
    [No Abstract]   [Full Text] [Related]  

  • 58. [Glutathione peroxidase. IV. Intracellular distribution of the glutathione peroxidase system in the rat liver].
    Flohé L; Schlegel W
    Hoppe Seylers Z Physiol Chem; 1971 Oct; 352(10):1401-10. PubMed ID: 5128315
    [No Abstract]   [Full Text] [Related]  

  • 59. The nature of inhibition of mitochondrial malate dehydrogenase by thyroxine, iodine cyanide and molecular iodine.
    Varrone S; Consiglio E; Covelli I
    Eur J Biochem; 1970 Apr; 13(2):305-12. PubMed ID: 4314809
    [No Abstract]   [Full Text] [Related]  

  • 60. [The effect of insulin deficiency and hydrocortisone on the activity of NADP- and NAD-dependent malate dehydrogenase in rat liver and renal cortex].
    Usatenko MS; Tsoncheva AV
    Vopr Med Khim; 1974; 20(4):401-6. PubMed ID: 4156816
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.