These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 4393326)

  • 1. [Use of 86Rb as a tracer for potassium. Studies on light-dependent 42K-K and 86Rb-Rb influx in Elodea densa].
    Jeschke WD
    Z Naturforsch B; 1970 Jun; 25(6):624-30. PubMed ID: 4393326
    [No Abstract]   [Full Text] [Related]  

  • 2. Potassium metabolism in seawater teleosts. I. The use of 86Rb as a tracer for potassium.
    Sanders MJ; Kirschner LB
    J Exp Biol; 1983 May; 104():15-28. PubMed ID: 6875469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of rubidium-86 and potassium-42 fluxes in rat aorta.
    Smith JM; Sanchez AA; Jones AW
    Blood Vessels; 1986; 23(6):297-309. PubMed ID: 3790746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination between Rb+ and K+ by Escherichia coli.
    Rhoads DB; Woo A; Epstein W
    Biochim Biophys Acta; 1977 Aug; 469(1):45-51. PubMed ID: 329878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium channels of the lamprey erythrocyte membrane exhibit a high selectivity to K+ over Rb+: a comparative study of 86Rb and 41K transport.
    Gusev GP; Fleishman DG; Nikiforov VA; Sherstobitov AO
    Gen Physiol Biophys; 1997 Sep; 16(3):273-84. PubMed ID: 9452948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of 42K and 86Rb loss from the crayfish retina in the dark and the effect of light on the rate of isotope loss.
    Stieve H; Hartung K
    Biochim Biophys Acta; 1977 Mar; 465(3):634-49. PubMed ID: 836842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of potassium (42K) and rubidium (86Rb) in different parts of denervated muscle.
    Graban W
    Invest Radiol; 1966; 1(6):445-8. PubMed ID: 5972453
    [No Abstract]   [Full Text] [Related]  

  • 8. Localization of potassium (42K) and rubidium (86Rb) in muscle.
    Graban W
    Invest Radiol; 1966; 1(6):441-4. PubMed ID: 5972452
    [No Abstract]   [Full Text] [Related]  

  • 9. Influx theory and size of potassium and rubidium pools in the midgut of Hyalophora cecropia.
    Wood JL; Harvey WR
    J Exp Biol; 1979 Oct; 82():1-9. PubMed ID: 11799677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of bicarbonate-dependent potassium uptake in cultured corneal endothelial cells.
    Savion N; Farzame N; Berlin HB
    Invest Ophthalmol Vis Sci; 1989 Apr; 30(4):690-7. PubMed ID: 2703310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exodus of 42K+ and 86Rb+ from rat thymic and human blood lymphocytes exposed to phytohemagglutinin.
    Segel GB; Gordon BR; Lichtman MA; Hollander MM; Klemperer MR
    J Cell Physiol; 1976 Mar; 87(3):337-43. PubMed ID: 1082887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of 42K and 86Rb in the organs of the rat.
    Bartha J; Wüstenberg PW
    Acta Physiol Acad Sci Hung; 1975; 46(1):1-8. PubMed ID: 1235452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of short term triiodothyronine administration on human leukocyte Rb(K) influx and Na efflux.
    Turaihi K; Khan FA; Baron DN; Dandona P
    J Clin Endocrinol Metab; 1987 Nov; 65(5):1031-4. PubMed ID: 3667873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The discrimination between Rb+ and K+ by Escherichia coli is changed after bacteriophage T7 infection.
    Kuhn A; Seiler HG
    Biochim Biophys Acta; 1984 Apr; 771(2):245-8. PubMed ID: 6367825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Illumination of the isolated frog retina and efflux of tracer potassium and rubidium.
    Sorbi RT; Cavaggioni A
    Vision Res; 1971 Sep; 11(9):985-93. PubMed ID: 5316227
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of 42K+ and 86Rb+ transport and electrical membrane properties in exponentially growing neuroblastoma cells.
    Boonstra J; Mummery CL; Tertoolen LG; Van der Saag PT; De Laat SW
    Biochim Biophys Acta; 1981 Apr; 643(1):89-100. PubMed ID: 7236694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application a three compartment tracerkinetic model for comparing the K+, Rb+ and Cs+ transport of erythrocytes.
    Györgyi S; Kanyár B
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):359-65. PubMed ID: 4671876
    [No Abstract]   [Full Text] [Related]  

  • 18. [Modeling the 42K and 86Rb distribution on the animal model of the rat].
    Böttcher M; Neumann J; Esther G; Unterspann S
    Radiobiol Radiother (Berl); 1982; 23(3):339-43. PubMed ID: 7178468
    [No Abstract]   [Full Text] [Related]  

  • 19. [Dynamics of potassium and rubidium (K-42 and Rb-86) disturbances in different parts of denervated muscles].
    Graban W
    Neurol Neurochir Psychiatr Pol; 1966 Nov; 16(11):1293-8. PubMed ID: 5974580
    [No Abstract]   [Full Text] [Related]  

  • 20. Special K: testing the potassium link between radioactive rubidium (86Rb) turnover and metabolic rate.
    Tomlinson S; Mathialagan PD; Maloney SK
    J Exp Biol; 2014 Apr; 217(Pt 7):1040-5. PubMed ID: 24363421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.