These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 4393641)

  • 21. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coenzyme site-directed mutants of photosynthetic A4-GAPDH show selectively reduced NADPH-dependent catalysis, similar to regulatory AB-GAPDH inhibited by oxidized thioredoxin.
    Sparla F; Fermani S; Falini G; Zaffagnini M; Ripamonti A; Sabatino P; Pupillo P; Trost P
    J Mol Biol; 2004 Jul; 340(5):1025-37. PubMed ID: 15236965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assimilatory nitrate reductase: reduction and inhibition by NADH/NAD+ analogs.
    Trimboli AJ; Barber MJ
    Arch Biochem Biophys; 1994 Nov; 315(1):48-53. PubMed ID: 7979404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antiphoto-oxidative activity of sesamol in methylene blue- and chlorophyll-sensitized photo-oxidation of oil.
    Kim JY; Choi DS; Jung MY
    J Agric Food Chem; 2003 May; 51(11):3460-5. PubMed ID: 12744684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Photobioelectric transduction in neuromembranes].
    Arvanitaki-Chalazonitis A
    Arch Ital Biol; 1973 Dec; 111(3-4):290-304. PubMed ID: 18847032
    [No Abstract]   [Full Text] [Related]  

  • 27. Methylene blue uptake and the reversal of chemically induced methemoglobinemias in human erythrocytes.
    Layne WR; Smith RP
    J Pharmacol Exp Ther; 1969 Jan; 165(1):36-44. PubMed ID: 4387304
    [No Abstract]   [Full Text] [Related]  

  • 28. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems.
    Foote CS
    Science; 1968 Nov; 162(3857):963-70. PubMed ID: 4972417
    [No Abstract]   [Full Text] [Related]  

  • 30. Photo-oxidation of haemocyanin in the presence of methylene blue.
    Wood EJ; Bannister WH
    Biochem J; 1967 Sep; 104(3):42P-43P. PubMed ID: 6049870
    [No Abstract]   [Full Text] [Related]  

  • 31. Reduction of vanadate to vanadyl by methylene-blue, imipramine, and chlorpromazine in absence of NADH.
    Vyskocil F; Pilar J; Zemková H; Teisinger J
    Lancet; 1982 May; 1(8280):1078-9. PubMed ID: 6122885
    [No Abstract]   [Full Text] [Related]  

  • 32. PHOTOOXIDATION OF ADENINE AND ITS NUCLEOTIDES IN THE PRESENCE OF RIBOFLAVIN.
    UEHARA K; MIZOGUCHI T; OKADA Y
    J Biochem; 1964 Jun; 55():685-7. PubMed ID: 14216416
    [No Abstract]   [Full Text] [Related]  

  • 33. LACTIC DEHYDROGENASE. IX. EFFECT OF PHOTO-OXIDATION UPON ACTIVITY AND COMPLEX FORMATION.
    MILLAR DB; SCHWERT GW
    J Biol Chem; 1963 Oct; 238():3249-55. PubMed ID: 14085369
    [No Abstract]   [Full Text] [Related]  

  • 34. [Sensitized photooxidation through methylene blue, thiopyronine, and pyronine. II. Physicochemical bases for the photodynamic effectiveness of thiopyronine].
    Berg H; Gollmick FA; Jacob HE; Triebel H
    Photochem Photobiol; 1972 Aug; 16(2):125-38. PubMed ID: 5052679
    [No Abstract]   [Full Text] [Related]  

  • 35. The oxidation-reduction potential of the blood under various pharmacological and pathophysiological conditions.
    ZIEGLER E
    Arch Int Pharmacodyn Ther; 1963 Feb; 141():556-64. PubMed ID: 14003608
    [No Abstract]   [Full Text] [Related]  

  • 36. Illuminating redox biology using NADH- and NADPH-specific sensors.
    Wiederkehr A; Demaurex N
    Nat Methods; 2017 Jun; 14(7):671-672. PubMed ID: 28661497
    [No Abstract]   [Full Text] [Related]  

  • 37. The effect of oxygen concentration on the quantum yields of the dye-sensitized photoinactivation of trypsin, alpha-chymotrypsin and lysozyme.
    Hodgson CF; Mc Vey EB; Spikes JD
    Experientia; 1969 Oct; 25(10):1021-2. PubMed ID: 5357082
    [No Abstract]   [Full Text] [Related]  

  • 38. Photooxidation of crystalline ribonuclease in the presence of methylene blue.
    WEIL L; SEIBLES TS
    Arch Biochem Biophys; 1955 Feb; 54(2):368-77. PubMed ID: 14350785
    [No Abstract]   [Full Text] [Related]  

  • 39. [Research on the biosynthesis of cyclite. X. Reduction of 5-O-methyl-neso-inosose-(3) by the enzyme of Trifolium incarnatum].
    Kremlicka GJ; Hoffmann-Ostenhof O
    Hoppe Seylers Z Physiol Chem; 1966; 344(4):261-6. PubMed ID: 4383965
    [No Abstract]   [Full Text] [Related]  

  • 40. Detection of oxidation-reduction by alkaline solutions of methylene blue and orcein.
    SPERLING F
    Fed Proc; 1946; 5(1 Pt 2):205. PubMed ID: 20983214
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.